版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 外文文獻翻譯</b></p><p><b> 英文原文</b></p><p> High Productivity —A Question of Shearer Loader Cutting Sequences</p><p> 1 Abstract</p><p
2、> Recently, the focus in underground longwall coal mining has been on increasing the installed motor power of shearer loaders and armoured face conveyors (AFC), more sophisticated support control systems and longer f
3、ace length, in order to reduce costs and achieve higher productivity. These efforts have resulted in higher output and previously unseen face advance rates. The trend towards “bigger and better” equipment and layout sche
4、mes, however, is rapidly nearing the limitations of technical and </p><p> 2 Introductions</p><p> Traditionally, in underground longwall mining operations, shearer loaders produce coal using
5、either one of the following cutting sequences: uni-directional or bi-directional cycles. Besides these pre-dominant methods, alternative mining cycles have also been developed and successfully applied in underground hard
6、 coal mines all over the world. The half-web cutting cycle as e.g. utilized in RAG Coal International’s Twentymile Mine in Colorado, USA, and the “Opti-Cycle” of Matla’s South African sho</p><p> Whereas th
7、e mentioned mines are applying the alternative cutting methods according to their spe-cific conditions, –e.g. seam height or equipment used, –this paper looks systematically at the differ-ent methods from a generalised p
8、oint of view. A detailed description of the mining cycle for each cutting technique, including the illustration of productive and non-productive cycle times, will be followed by a brief presentation of the performed prod
9、uction capacity calculation and a summary of the t</p><p> 3 State-of-the-art of shearer loader cutting sequences</p><p> The question “Why are different cutting sequences applied in longwall
10、mining?” has to be an-swered, before discussing the significant characteristics in terms of operational procedures. The major constraints and reasons for or against a special cutting method are the seam height and hard-n
11、ess of the coal, the geotechnical parameters of the coal seam and the geological setting of the mine influencing the caving properties as well as the subsidence and especially the length of the longwall face. F</p>
12、<p> A categorization of shearer loader cutting sequences is realised by four major parameters . Firstly, one can separate between mining methods, which mine coal in two directions – meaning from the head to the
13、tailgate and on the return run as well – or in one direction only. Secondly, the way the mining sequence deals with the situation at the face ends, to advance face line after extract-ing the equivalent of a cutting web,
14、is a characteristic parameter for each separate method. The nec-essary tr</p><p> Bi-directional cutting sequence</p><p> The bi-directional cutting sequence, depicted in Figure 1a, is charact
15、erised by two sumping opera-tions at the face ends in a complete cycle, which is accomplished during both the forward and return trip. The whole longwall face advances each complete cycle at the equivalent of two web dis
16、tances by the completion of each cycle. The leading drum of the shearer cuts the upper part of the seam while the rear drum cuts the bottom coal and cleans the floor coal. The main disadvantages of this cutting</p>
17、<p> Uni-directional cutting sequence</p><p> In contrast to the bi-directional method, the shearer loader cuts the coal in one single direction when in uni-directional mode. On the return trip, the
18、 floor coal is loaded and the floor itself cleaned. The shearer haulage speeds on the return trips are restricted only by the operators’ movement through the longwall face, or the haulage motors in a fully automated oper
19、ation. The sumping procedure starts in near the head gate, as shown in Figure 1b. The low machine utilisation because of cutting</p><p> Half web cutting sequence </p><p> The main benefit of
20、half web cutting sequences is the reduction of unproductive times in the mining cycle, which results in high machine utilisation. This is achieved by cutting only a half web in mid face with bi-directional gate sequences
21、 as shown in Figure 2a. The full web is mined at the face ends, with lower speeds allowing faster shearer operation in both directions in mid seam. Beside the realisation of higher haulage speeds, the coal flow on the AF
22、C is more balanced for shearer loader tr</p><p> Half-/partial-opening cutting sequence</p><p> The advantage of the half- or, more precisely, partial- opening cutting sequence is the fact tha
23、t the face is extracted in two passes. Figure 2b shows that the upper and middle part of the seam is cut during the pass towards the tailgate. Whereas the last part of this trip for the equivalent of a ma-chine length th
24、e leading drum is raised to cut the roof to allow the roof support to be advanced. On the return trip the bottom coal is mined with the advantage of a free face and a smaller proportio</p><p> 4 Production
25、capacity calculations</p><h2> A theoretical comparison of the productivity between different mining methods in general, or in this case between different shearer loader cutting cycles, is always based on n
26、umerous assumptions and technical and geological restrictions. As a result, this production capacity calculation does not claim to offer exact results, although it does indicate productivity trends and certain parameters
27、 for each analysed method. </h2><p> The model works with so-called height classes varying the seam thicknesses between 2m and 5m in steps of 50cm. Equipment is assigned to each class, having been selected
28、by looking at the best-suited technical properties available on the market [4]. Apart from the defined equipment, it is assumed that the seam is flat and no undulations or geological faults occur. In the model, the venti
29、lation and the roof support system represent no restrictions to the production. Since the aim of this model is </p><p> The variable parameters in this comparison of the four cutting sequences are, (besides
30、 seam thick-ness) the specific cutting energy of the coal to be cut and the length of the longwall face. The former varying between 0.2 and 0.4kWh/m³, the latter between 100m and 400m in 50m intervals. The 100m shor
31、twalls were deliberately selected, since they are coming more into focus for various reasons. Geotechnical aspects, like e.g. the caving ability of the hanging wall and faults, restrict long-wall pan</p><p>
32、 5 Conclusions </p><p> In recent years much effort has been put into the optimisation of longwall operations to increase productivity and efficiency. In many cases the emphasis of these improvements was
33、mainly focused on the equipment, e.g. increased motor power or larger dimensions of AFC’s. The organisational aspect has sometimes been neglected or did not rank as high on the agenda as other topics. In this paper, it h
34、as been demonstrated that the selected mining method has a significant impact on the achievable prod</p><p> In a theoretical model four cutting sequences have been compared to each other while varying seam
35、 thickness, face length and coal properties in terms of specific cutting energy. </p><p> For each seam or height class a defined set of equipment was used with consistent restraints. Though each mine is un
36、ique, some general conclusions can be drawn analysing the capacity model. Under the restrictions of the model the half web cutting sequence offers the highest output of all analysed methods fol-lowed by the half-opening
37、mode. Depending on the face length, the bi-directional cutting method has advantages compared to the uni-directional sequence in terms of higher productivity. </p><p><b> 中文譯文</b></p><
38、;p> 高效生產 — 一個關于采煤機截割的次序的問題</p><p><b> 1 摘要</b></p><p> 目前, 地面下長壁采煤法致力于增加安裝在采煤機和甲板輸送機的電機功率, 以及更先進的支架控制系統(tǒng)和增加工作面長度,以達到減少費用和取得較高的生產效率的目的。這種努力已經造成較高的開支和先前未見過的設備費用增長速度?,F在趨向于 "更大
39、和更好" 的儀器和裝備,然而這種趨勢在技術上和費用上的可行性已經達到極限。為了要實現進一步促進生產力的增加,合理、有機地規(guī)范長臂采煤法的工序應該是解決提高生產效率問題的唯一的合理答案。在本文中論述了通過合理安排采煤機的截割次序以實現提高采煤工作效率。</p><p><b> 2 簡介</b></p><p> 傳統(tǒng)上,在地面下長壁采煤法操作方面,采煤機
40、挖掘過程中,使用以下截割次序之一:反方向的或雙方向的循環(huán)。除了這兩種主要的方法,交替循環(huán)采煤也已經應用在地下的硬煤層開采中,它被成功地推廣在全世界的挖掘過程中。就半邊切斷循環(huán)舉例來說,在科羅拉多,美國在二十里煤礦利用,而且 Matla's 的南非短巷道操作的開采也在這被應用。 其他類似的采掘已經通過驗證改進截割次序能提高開采產量,舉例來說,它大約能夠在產量上增加40%的。</p><p> 然而提到應用
41、在采煤上根據特殊情況而改變切割的方法,–用煤層高度和設備的使用來舉例說明,論文系統(tǒng)地論述通過從不同的角度采取不同的方法。詳細描述了采礦的每種切割方法, 包括能生產的和不能生產的循環(huán),以下將會給出一個簡短的關于采煤機生產能力的計算和每個系統(tǒng)在技術上的受到的約束的概要說明。根據煤層的厚度采用不同標準的設備和合適的裝置 。此外采煤機和甲板輸送機,工作面的長度和特定采煤機截割方式等技術參數在本模型中根據不同的煤層厚度而改變。</p>
42、<p> 根據采煤的產量,不同采煤機截割的方法可以通過一個標準化方法繪制產量圖來反映不同截割方法的優(yōu)劣。 根據模型的特征,最優(yōu)的結果 ( 通過改變截割方式而得到的不同的采煤產量)就能獲得。 </p><p> 3 采煤截割次序的技術說明</p><p> "為什么長壁采煤法應用的不同切割次序?"這個問題是必須回答的,在以討論操作工序的主要規(guī)則之前,切
43、割方法主要受到煤層的厚度和煤層硬度等因素的限制,就像煤層的物理參數和礦的地質學條件影響煤的崩落能力一樣,同樣也會影響長壁采煤法工作面的煤層塌方。對于不同的地質條件,不同的截割次序都會得到不同的生產效率和不同質量的工作面。 煤送入甲板輸送機之上正如采煤機截割,是采煤中的另外一個問題,尤其是在截齒上受到的屈服應力和疲勞應力。 一個對于選擇最適合的截割次序的全面分析是必要的-適合采礦替換;因為,一般性的解答是不能保證最佳的效率和產量。 <
44、;/p><p> 對于一個采煤機截割次序的分類是通過四個主要的參數來規(guī)定的.第一,能在采礦方法之間分開,向礦井的兩個方向即從頭到尾。第二,根據截割次序,在到達工作面尾部, 預先在選取一個等價的線切斷網,是區(qū)分截割方法的一個獨立的參數。必須有一定的距離空間以改變截割次序, 因為做這些需要一定的時間。 定義截割次序的另外一個方面是網狀斷煤的軌跡。 然而傳統(tǒng)地完整的使用, 現代的甲板輸送機和液壓支架系統(tǒng)允許使用有效率的一
45、半網方法操作。區(qū)分截割工藝的以前那些參數就可以把不同的截割方式區(qū)分。除了部份或半開口像被用在Matla的循環(huán)截割中的那些一樣的方法,切斷高度分別包括柔軟懸吊裝置和采煤機的高度,它和煤層厚度相等。 </p><p><b> 雙方向的截割次序</b></p><p> 在圖1中被描述的雙方向的截割次序, 是表示工作面二點之間的特點,在一個完全的截割操作周期中, 是
46、在兩者的向前和返回期間是完成的。整個長壁采煤法每個周期的完成等價于在網狀截割軌跡的一個巡回。滾筒的前端面截割煤層的頂部而滾筒的后端面截割煤層的下部,同時起到清除落煤的作用。這個切割的方法主要的缺點主要表現在截割時間和操作比較復雜。 因此,趨勢近幾年來要增加工作面的長度以減少挖掘過程中的沖擊載荷和延長截齒的壽命。</p><p><b> 單方向的截割次序</b></p>&l
47、t;p> 與雙方向的方法相反,在單向模型里截割采煤機截割是朝一個方向進行的。 在回返行程中,地板煤是被采煤機底板它本身清理。截割運動在往返時被在工作面限制了操作運動推進的速度。截割操作在工作面的開頭部位,如圖1 b所示。因為切割動作只能是一個方向循環(huán)而使截割的工作效率低,它是單向截割次序的主要缺點。此外煤流可能是相當不規(guī)則,它依賴于采煤機在截割周期中的位置。</p><p><b> 半滾筒截
48、割次序</b></p><p> 半滾筒截割的主要優(yōu)點是它減少采煤機在截割過程中的無效截割時間,造成高機器利用。如圖 2 所顯示的半滾筒截割次序處于工作面中間位置時,它與雙方向截割次序具有一致性。完整的滾筒在截割結束時,藉由更快速地允許的較低速度在煤層的中間部位向兩個方向操作。除了實現較高的牽引速度,在甲板輸送機被的采煤機雙向循環(huán)的煤流而平衡。</p><p><b&g
49、t; 半開口切割次序</b></p><p> 這種方法的優(yōu)點更突出,它實際上是在二個方法中的提高和改進。如圖2 b所示煤層的上端面和中間部分在向它的后端面時被截割。在回程底部的煤與自由的面和工作面的較小比例的來切斷煤層來一起截割;結果其牽引速度由于受到材料的切割能特性而限制。滾筒截割在煤層的中間部位不會產生無效的截割時間。類似的回程后門工作面必須在進入主工作面之前減小機身長度。</p>
50、;<p><b> 4 生產力計算</b></p><p> 不同的采礦方法之間的生產力在理論上的做一個大體的比較, 因為在這情況通過在不同的之間采煤機的截割周期,總是存在很多假定和技術上的以及地質學的限制為基礎。因而,不能提供精確的結果,但是它為每個截割方法的分析確實提供了生產力的高低趨勢和某些參數。 </p><p> 該模型實用于煤層厚度在2
51、 m 和 5 m 之間以50cm為一個等級的被稱之為厚煤層的煤礦類型,根據不同的等級選擇不同的設備,可以在市場上選擇最適合該等級開采的設備。除了規(guī)范儀器之外,它假設煤層是平坦的且沒有波動和地質上的缺陷。在模型中,通風和頂層支持系統(tǒng)不對生產超出限制。 既然這一個模型的目標要實現進一步的增加生產力,該計算是基于在沒有人工的操作干預的情況下一個完全自動化的系統(tǒng)操作的工作面。制約牽引速度的唯一因素是甲板輸送機,切割電動機和牽引電動機相互獨立。
52、</p><p> 通過比較四種截割次序的可變參數 (除了煤層厚度) 煤截割的能耗和長壁采煤法的工作面的長度被降低。前者在0.2 到0.4,后者在100 m 和 400 m 之間每間隔50 m,因為它們受到多方面的因素影響。 在地理方面, 像舉例來說墻壁崩落能力和缺陷,它限制煤層最大工作面長度達到150 m, 像在南非和英國。 因為這一個原因,如此一項詳細長壁采煤發(fā)的潛在可行性分析被認識合理的。 </p&
53、gt;<p><b> 5 總結</b></p><p> 近幾年來,很多工作都是致力于長壁采煤法的最優(yōu)化以增加到生產力和效率的目的。在許多情況,他們過于強調把重心集中在設備,舉例來說 增加甲板輸送機的電動機功率和增大其尺寸。而某些積極的方面有時被在不同程度上被忽略,它們沒有被提升到一個比較重要的日程。 在論文中,通過選擇不同的截割次序的采礦方法在生產力上所取得的成功產生深
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--高效生產 — 一個關于采煤機截割的次序的問題
- 外文翻譯--高效生產一個關于采煤機截割的次序的問題
- 外文翻譯--高效生產一個關于采煤機截割的次序的問題.doc
- 外文翻譯--高效生產一個關于采煤機截割的次序的問題.doc
- 高效生產 — 一個關于采煤機截割的次序的問題(翻譯).docx
- 高效生產 — 一個關于采煤機截割的次序的問題(翻譯).docx
- 采煤機截割部設計畢業(yè)設計
- 畢業(yè)設計----采煤機截割部設計
- 采煤機截割部設計畢業(yè)設計
- 畢業(yè)設計_滾筒采煤機截割部的設計
- 裝機700采煤機截割部設計畢業(yè)設計
- 畢業(yè)設計_薄煤層采煤機截割部設計
- 采煤機截割畢業(yè)設計說明書
- 滾筒采煤機截割部的設計
- 滾筒采煤機截割部的設計
- 畢業(yè)論文---采煤機截割部的設計
- 新型電牽引采煤機截割部的設計畢業(yè)設計
- 滾筒采煤機截割部的設計
- 滾筒采煤機截割部的設計
- 滾筒采煤機截割部的設計
評論
0/150
提交評論