2023年全國(guó)碩士研究生考試考研英語(yǔ)一試題真題(含答案詳解+作文范文)_第1頁(yè)
已閱讀1頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  畢 業(yè) 設(shè) 計(jì)(論 文)外 文 參 考 資 料 及 譯 文</p><p>  譯文題目: 非定常翼型繞流的間歇前緣渦輪脫落標(biāo)準(zhǔn)離散渦方法 </p><p>  學(xué)生姓名: 學(xué)  號(hào): </p><p>  ?! I(yè):

2、 </p><p>  所在學(xué)院: </p><p>  指導(dǎo)教師: </p><p>  職  稱: </p&g

3、t;<p><b>  年 月 日</b></p><p><b>  說(shuō)明:</b></p><p>  要求學(xué)生結(jié)合畢業(yè)設(shè)計(jì)(論文)課題參閱一篇以上的外文資料,并翻譯至少一萬(wàn)印刷符(或譯出3千漢字)以上的譯文。譯文原則上要求打?。ㄈ缡謱?,一律用400字方格稿紙書(shū)寫),連同學(xué)校提供的統(tǒng)一封面及英文原文裝訂,于畢業(yè)設(shè)計(jì)(論文

4、)工作開(kāi)始后2周內(nèi)完成,作為成績(jī)考核的一部分。</p><p>  Discrete-vortex method with novel shedding</p><p>  criterion for unsteady aerofoil flows with</p><p>  intermittent leading-edge vortex shedding<

5、;/p><p>  Kiran Ramesh 1, ?, Ashok Gopalarathnam 1 , Kenneth Granlund 2 ,</p><p>  Michael V. Ol 2 and Jack R. Edwards 1</p><p>  1 Department of Mechanical and Aerospace Engineering,

6、North Carolina State University, Raleigh,NC 27695-7910, USA2 US Air Force Research Laboratory, Air Vehicles Directorate, AFRL/RBAL, Building 45,2130 8th Street, WPAFB, OH 45433, USA(Received 18 November 2013; revised 15

7、May 2014; accepted 21 May 2014;first published online 23 June 2014)</p><p>  Unsteady aerofoil flows are often characterized by leading-edge vortex (LEV)shedding. While experiments and high-order computation

8、s have contributed to ourunderstanding of these flows, fast low-order methods are needed for engineeringtasks. Classical unsteady aerofoil theories are limited to small amplitudes andattached leading-edge flows. Discrete

9、-vortex methods that model vortex sheddingfrom leading edges assume continuous shedding, valid only for sharp leading edges,</p><p>  or shedding governed by ad-hoc criteria such as a critical angle of attac

10、k, validonly for a restricted set of kinematics. We present a criterion for intermittent vortexshedding from rounded leading edges that is governed by a maximum allowableleading-edge suction. We show that, when using uns

11、teady thin aerofoil theory, thisleading-edge suction parameter (LESP) is related to the A 0 term in the Fourier seriesrepresenting the chordwise variation of bound vorticity. Furthermore, for any aerofoiland</p>&

12、lt;p>  of the motion kinematics. When the instantaneous LESP value exceeds the criticalvalue, vortex shedding occurs at the leading edge. We have augmented a discrete-time,arbitrary-motion, unsteady thin aerofoil theo

13、ry with discrete-vortex shedding from theleading edge governed by the instantaneous LESP. Thus, the use of a single empiricalparameter, the critical-LESP value, allows us to determine the onset, growth, and</p>&l

14、t;p>  termination of LEVs. We show, by comparison with experimental and computationalresults for several aerofoils, motions and Reynolds numbers, that this computationallyinexpensive method is successful in predicting

15、 the complex flows and forces resultingfrom intermittent LEV shedding, thus validating the LESP concept.</p><p>  Key words: computational methods, separated flows, vortex interactions</p><p>  

16、1. Introduction</p><p>  Unsteady flow phenomena are prevalent in a wide range of problems in nature andengineering. These include, but are not limited to, dynamic stall in rotorcraft andwind turbines, leadi

17、ng-edge vortices in delta-wings, micro air vehicle (MAV) design,?Email address for correspondence: kramesh2@ncsu.eduDiscrete-vortex method with novel shedding criterion for aerofoil flow 501 gust handling and flow contro

18、l. Unsteady flows are characterised by rapid changes inthe circulation of the aerofoil, apparent-m</p><p>  Theodorsen (1935) developed a potential flow solution for the unsteady airloads on a flat plate und

19、ergoing harmonic, small-amplitude oscillations in pitch and plunge.</p><p>  Wagner (1925) solved for the lift response of an aerofoil undergoing a step change in angle of attack (indicial response). The uns

20、teady lift coefficient due to arbitrary changes in angle of attack could hence be calculated by superposition using the Duhamel integral (Leishman 2002, chapter 8). McCune, Lam & Scott (1990) have presented a nonline

21、ar theory of unsteady potential flow which allows determination of lift and moment coefficients for large-amplitude motions.</p><p>  Although these and other classical theories (Garrick 1937; von Kárm&

22、#225;n & Sears 1938) have proven invaluable in offering insight into unsteady aerodynamics and in fields such as aeroelasticity, their applicability in many problems is hindered by their inherent assumptions (small a

23、mplitudes, planar wake, fully attached flow). Advances in computational fluid dynamics (CFD) and experimental techniques have facilitated the</p><p>  detailed study and analysis of unsteady phenomena. Ol et

24、 al. (2009a) and McGowan et al. (2011) have analysed the forces and flow fields for unsteady motions over a broad parameter space using both experimental and computational methods. Garmann & Visbal (2011) and Granlun

25、d, Ol & Bernal (2013) have investigated pitching flat plates in detail through computational and experimental methods respectively. Baiket al. (2012), Pitt Ford & Babinsky (2013) and Rival et al. (2014) have stud

26、ied the</p><p>  effects and influence of leading-edge vortices using experimental techniques. However,these methods are not suitable for applications such as real-time simulation, rapid analysis, control an

27、d design, because of cost and time considerations. Since closed-form solutions from theory are incapable of capturing the various nonlinear effects,we may suitably augment theory with numerical procedures to expand its r

28、ange of</p><p>  applicability. Brunton, Rowley & Williams (2013) and Wang & Eldredge (2013) have developed such phenomenologically augmented theoretical methods. With computing power and technology

29、advancing rapidly, low-order numerical models (constructed by augmenting classical theory) may provide the perfect balance between fidelity and cost.</p><p>  In this paper, a discrete-vortex method with a n

30、ovel shedding criterion is proposed for modelling of massively separated, vortex-dominated flows.</p><p>  Significant investigation of unsteady flow phenomena has been carried out by researchers interested

31、in studying and finding methods to suppress dynamic stall.</p><p>  Dynamic stall refers to unsteady separation and stall phenomena on aerofoils that execute time-dependent motion, where the effective angle

32、of attack exceeds the static stall angle (McCroskey 1981, 1982). This process results in a delayed onset of flow separation/stall, followed by the shedding of a vortex from the leading edge of the aerofoil which traverse

33、s the aerofoil chord (Leishman 2002, chapter 9). Although this</p><p>  vortex enhances the lift when it stays over the surface of the aerofoil, it also creates large nose-down pitching moments and flow sepa

34、ration over the entire aerofoil when it convects off the trailing edge. Hence dynamic stall can lead to violent vibrations and dangerously high airloads, resulting in material fatigue and structural failure. A good revie

35、w of experimental and numerical approaches toward understanding and predicting dynamic stall in given by Carr (1988) and Carr et al. (1990). A la</p><p>  with a demonstration of their capabilities is given

36、in Leishman (2002, chapter 9).These models however, rely on several empirical parameters and can only be used in conditions that are bounded by validation with experimental data.</p><p>  502 K. Ramesh, A. G

37、opalarathnam, K. Granlund, M. Ol and J. Edwards</p><p>  Discrete-vortex methods have also been used extensively to model unsteady</p><p>  separated flows. These methods are typically based on

38、potential-flow theory, and the shear layers representing separated flow emanate from the surface in the form of discrete vortices. Clements & Maull (1975) and Saffman & Baker (1979) provide detailed background on

39、 the historical development of the discrete-vortex method.A review of more recent progress on the application of vortex methods for flow simulation is given by Leonard (1980). Clements (1973), Sarpkaya (1975), Kiya &

40、 Arie (1977), and </p><p>  to model flow past inclined plates and bluff bodies. Katz (1981) has developed a method for partially separated flow past an aerofoil, where the location of separation on the aero

41、foil has to be known through experiment or other means.</p><p>  More recently, low-order methods based on discrete vortices have been developed by Ansari</p><p>  Zbikowski & Knowles (2006a

42、), Wang & Eldredge (2013), Xia & Mohseni</p><p>  (2013), and Hammer, Altman & Eastep (2014) to model leading-edge vortices in unsteady flows, with applications to insect flight and MAV aerodynam

43、ics. Although these methods are based on potential theory, they capture the essential physics in flows of interest by augmentation of inviscid theory with discrete-vortex shedding.</p><p>  Apart from provid

44、ing a means to calculate the force coefficients on the aerofoil, these methods also enable study of the flow features and identification of dominant unsteady effects which require further modelling. These are significant

45、 advantages of this class of methods over semi-empirical methods, which only allow determination of the force coefficients through empirical fitting. However, the computational complexity increases as O(n 2 ) (when fast

46、summation methods are not used), where n is</p><p>  Moreover, the methods cited above assume some ad-hoc start and stop criteria for vortex shedding, such as continuous shedding from a given location (valid

47、 only for sharp edges) or shedding that starts and stops depending on whether the local angle of attack exceeds a critical value (valid only for a small range of motions). A more general vortex shedding criterion is need

48、ed to make discrete-vortex methods broadly applicable to a wide range of geometries (including aerofoils with rounded leading</p><p>  edges) and arbitrary unsteady motions.</p><p>  In previous

49、 research (Ramesh et al. 2013b), the authors have developed an unsteady aerofoil theory based on potential flow, which holds uniformly regardless of amplitude and reduced frequency of motion, and shape of trailing wake.

50、This method was applied to a pitch-up, hold, pitch-down motion which was characterised by the shedding of a strong leading-edge vortex (LEV) during a part of the motion. The method was seen to predict well even under con

51、ditions of large amplitude and high reduced frequ</p><p>  LEV formation was required. With this objective, the leading-edge suction parameter(LESP) was developed by the authors (Ramesh et al. 2011). This pa

52、rameter is a measure of the suction at the leading edge and it was shown that initiation of LEV formation always occurred at the same critical value of LESP, regardless of motion kinematics so long as the aerofoil and Re

53、ynolds number of operation were the same.</p><p>  These methods are reviewed in §2.1. In this research, a discrete-vortex method is proposed in which the LESP criterion is used to modulate the initiati

54、on, growth, and termination of intermittent LEV shedding. The extension of the LESP criterion to handle LEV shedding and termination is discussed in §2.2. Details of the vortex method are discussed in §2.3. The

55、 LESP-modulated discrete-vortex method (LDVM) from the current work is validated for use in LEV-dominated flows against results from CFD an</p><p>  新脫落的非定常翼型繞流的間歇前緣渦脫落標(biāo)準(zhǔn)離散渦方法</p><p>  不穩(wěn)定機(jī)翼流動(dòng)常常

56、為前沿(LEV)脫落。而實(shí)驗(yàn)和高階計(jì)算造成了我們了解這些流,快速低工程所需的方法任務(wù)。經(jīng)典不穩(wěn)定僅限于小振幅和機(jī)翼理論附加的前沿流動(dòng)。Discrete-vortex渦旋脫落的方法模型只從前緣假設(shè)不斷脫落,有效尖銳前緣或減少由特別標(biāo)準(zhǔn)如臨界迎角、有效只有一組限制的運(yùn)動(dòng)學(xué)。我們提出一個(gè)標(biāo)準(zhǔn)間歇從圓的前緣,脫落是由最大允許尖端的吸入。我們表明,當(dāng)使用不穩(wěn)定的薄機(jī)翼理論,這一點(diǎn)尖端吸參數(shù)(LESP)項(xiàng)有關(guān)傅里葉級(jí)數(shù)代表綁定渦度弦向變化。此外,對(duì)

57、于任何機(jī)翼和雷諾數(shù),LESP的臨界值,這是獨(dú)立的運(yùn)動(dòng)的運(yùn)動(dòng)學(xué)。當(dāng)瞬時(shí)LESP值超過(guò)臨價(jià)值,渦旋脫落發(fā)生在前緣。我們?cè)鰪?qiáng)了離散時(shí)間,arbitrary-motion,不穩(wěn)定的薄機(jī)翼理論的discrete-vortex脫落前緣由瞬時(shí)LESP。因此,使用一個(gè)單一的經(jīng)驗(yàn)參數(shù),critical-LESP值,使我們能夠確定發(fā)病,增長(zhǎng),列弗的終止。我們顯示通過(guò)對(duì)比實(shí)驗(yàn)和計(jì)算結(jié)果幾個(gè)翼面,動(dòng)作和雷諾茲數(shù),計(jì)算便宜的方法成功地預(yù)測(cè)復(fù)雜的流和力產(chǎn)生的從間歇

58、列脫落,從而驗(yàn)證LES概念。</p><p>  關(guān)鍵詞:計(jì)算方法,分離流,渦輪相互作用</p><p><b>  1、介紹</b></p><p>  不穩(wěn)定流動(dòng)現(xiàn)象是普遍在性質(zhì)和范圍廣泛的問(wèn)題工程。這包括,但不限于,在旋翼和動(dòng)態(tài)失速風(fēng)力渦輪機(jī),尖端在三角翼的漩渦,微型飛行器(微型飛行器設(shè)計(jì),?通信的電子郵件地址:kramesh2@ncsu

59、.eduDiscrete-vortex方法機(jī)翼流小說(shuō)脫落標(biāo)準(zhǔn)501陣風(fēng)處理和流控制。不穩(wěn)定流動(dòng)的特點(diǎn)是快速變化機(jī)翼的循環(huán),表觀質(zhì)量的影響,流動(dòng)分離和旋渦流場(chǎng)。理論工作在這些主題可以追溯到1930年代和1920年代。Theodorsen(1935)開(kāi)發(fā)潛在的流不穩(wěn)定飛行時(shí)的載重量的解決方案平板進(jìn)行諧波,小振幅振蕩在音高和暴跌。瓦格納(1925)解決電梯響應(yīng)機(jī)翼發(fā)生階躍變?cè)诠ソ?指標(biāo)的響應(yīng))。由于任意的非定常升力系數(shù)攻角的變化因此可以計(jì)算疊

60、加使用杜哈梅積分(全新2002年,第8章)。麥克卡尼,林&斯科特(1990)提出了一個(gè)非線性非定常勢(shì)流理論允許的決心的升力和力矩系數(shù)大幅度動(dòng)作。雖然這些和其他經(jīng)典理論(灰呂1937;·馮·卡門和西爾斯1938)已被證明在提供洞察非定??諝鈩?dòng)力學(xué)和無(wú)價(jià)的空氣彈性等領(lǐng)域,他們?cè)谠S多問(wèn)題阻礙了其適用性固有的假設(shè)(小振幅,平面后,完全附流)。進(jìn)步計(jì)算流體動(dòng)力學(xué)(CFD)和實(shí)驗(yàn)</p><p>

61、  促進(jìn)了詳細(xì)研究和分析的不穩(wěn)定現(xiàn)象。Ol et al .(2009)和麥高文et al。(2011)分析了部隊(duì)和流場(chǎng)的非定常運(yùn)動(dòng)廣泛的參數(shù)空間用實(shí)驗(yàn)和計(jì)算方法。Garmann& Visbal(2011)和Granlund Ol &伯納爾(2013)已經(jīng)調(diào)查了俯仰平面詳細(xì)板分別通過(guò)計(jì)算和實(shí)驗(yàn)方法。Baiket al。(2012年),皮特福特&巴賓斯基(2013)和競(jìng)爭(zhēng)對(duì)手et al。(2014)的研究效果和使用實(shí)

62、驗(yàn)技術(shù)前沿漩渦的影響。然而,這些方法不適合應(yīng)用,如實(shí)時(shí)仿真、快速分析、控制和設(shè)計(jì),因?yàn)槌杀竞蜁r(shí)間考慮。自閉,形成解決方案從理論不能捕獲各種非線性效應(yīng),我們可以適當(dāng)增加理論和數(shù)值程序,擴(kuò)大其范圍適用性。勃氏,羅利和威廉姆斯(2013)和王&·(2013)發(fā)達(dá),進(jìn)而增強(qiáng)理論方法等。與計(jì)算力量和技術(shù)發(fā)展迅速,低階數(shù)值模型(由增加經(jīng)典理論)可以提供完美的保真度和成本之間的平衡。摘要discrete-vortex方法提出了新穎的

63、脫落標(biāo)準(zhǔn)造型大大分開(kāi),vortex-dominated流動(dòng)。重大的不穩(wěn)定流動(dòng)現(xiàn)象進(jìn)行了調(diào)查研究人員感興趣的研究,找到方法來(lái)抑制動(dòng)態(tài)失速。動(dòng)態(tài)失速分離是指非定常在翼面和</p><p>  502 k·拉梅什,a .Gopalarathnam k . Granlund m 和j·愛(ài)德華茲</p><p>  Discrete-vortex方法也被廣泛地用于模型不穩(wěn)定分離流

64、動(dòng)。這些方法通常是基于位勢(shì)流理論,代表分離流的剪切層是從表面形式離散的漩渦??巳R門茨&莫爾(1975)和薩夫曼&貝克(1979)提供的詳細(xì)的歷史發(fā)展背景discrete-vortex方法。</p><p>  回顧最近的進(jìn)展流渦方法的應(yīng)用仿真是由倫納德(1980年)??巳R門茨(1973),Sarpkaya(1975),琪雅&阿里(1977),和其他研究人員已經(jīng)成功應(yīng)用這一</p>

65、;<p>  類的方法模型流過(guò)去的斜板和虛張聲勢(shì)的身體。Katz(1981)了方法部分分離流過(guò)去的機(jī)翼,那里的位置分離的機(jī)翼必須通過(guò)實(shí)驗(yàn)或其他手段。</p><p>  最近,低階方法開(kāi)發(fā)了基于離散漩渦安薩里,˙Zbikowski &諾爾斯(2006),夏王&·(2013),和穆赫辛尼經(jīng)常(2013)和錘,奧特曼& Eastep(2014)模型的前沿漩渦不穩(wěn)定流動(dòng),

66、應(yīng)用昆蟲(chóng)飛行和微型飛機(jī)空氣動(dòng)力學(xué)。雖然這些方法都是基于潛在的理論,他們捕獲的基本物理增加的流動(dòng)感興趣的非粘性的理論與discrete-vortex脫落。除了提供一個(gè)意味著計(jì)算機(jī)翼上的力系數(shù),這些方法也使研究的主導(dǎo)不穩(wěn)定的流動(dòng)特性和識(shí)別效果需要進(jìn)一步的造型。這些都是這個(gè)類的顯著的優(yōu)勢(shì)方法在半經(jīng)驗(yàn)方法,只允許的決心力通過(guò)經(jīng)驗(yàn)擬合系數(shù)。然而,計(jì)算復(fù)雜度增加O(n - 2)(當(dāng)不使用快速求和方法),其中n是的旋渦流場(chǎng),導(dǎo)致可能大量計(jì)算時(shí)間。此外

67、,上面列舉的方法假設(shè)一些特別的啟動(dòng)和停止的標(biāo)準(zhǔn)渦旋脫落,如連續(xù)流從一個(gè)給定的位置(僅為有效銳利的邊緣)或脫落,啟動(dòng)和停止取決于當(dāng)?shù)氐慕堑墓舫^(guò)一個(gè)臨界值(有效的只有一個(gè)小范圍的運(yùn)動(dòng))。一個(gè)更通用渦旋脫落標(biāo)準(zhǔn)是需要discrete-vortex方法廣泛適用于各種幾何圖形(包括翼面圓領(lǐng)邊緣)和任意的非定常運(yùn)動(dòng)。在先前的研究(拉梅什et al . 2013 b),</p><p>  F IGURE 1。在線(顏色)

68、時(shí)域方法的一個(gè)例子。2。LESP-modulateddiscrete-vortex方法(LDVM)</p><p><b>  2.1。背景</b></p><p>  在這一節(jié)中,作者先前開(kāi)發(fā)的理論方法總結(jié)。感興趣的讀者可以參考拉梅什et al .(2011)和拉梅什et al .(2013 b)為進(jìn)一步的細(xì)節(jié)。</p><p>  2.1.

69、1。大角度不穩(wěn)定thin-aerofoil理論</p><p>  大角度不穩(wěn)定thin-aerofoil理論開(kāi)發(fā)的目的消除了傳統(tǒng)小角度的假設(shè)在thin-aerofoil理論無(wú)效的活期利息的流動(dòng)。該方法基于時(shí)域方法由卡茨&普羅金(2000)。在圖1中,給出了慣性坐標(biāo)系OXYZ車身骨架,連接到移動(dòng)的機(jī)翼,Bxyz。在時(shí)間t = 0時(shí),兩個(gè)坐標(biāo)系一致和時(shí)間t > 0,身體朝著左邊的幀走一個(gè)時(shí)變的頁(yè)面。在

70、每個(gè)時(shí)間步,一個(gè)離散的后緣渦從后緣(TEV)了。類似于古典thin-aerofoil理論,在渦量分布機(jī)翼,γ(x)是傅里葉級(jí)數(shù),γ(θ,t)= 2 u</p><p>  ”0(t)1 + cosθsinθ+∞Xn = 1一個(gè)n(t)的罪(nθ)#(2.1)θ是一個(gè)變量的變換與弦向的坐標(biāo)xx =c2(1?cosθ),(2.2)和0(t),1(t)……,n(t)是依賴于時(shí)間的傅里葉系數(shù),c是機(jī)翼弦,U是組件的機(jī)翼速

71、度- X方向。庫(kù)塔條件(0后緣渦度)通過(guò)傅里葉級(jí)數(shù)的形式執(zhí)行隱式。傅里葉系確定的函數(shù)的瞬時(shí)當(dāng)?shù)卦跈C(jī)翼向下運(yùn)動(dòng)嗎執(zhí)行流的邊界條件必須保持切向機(jī)翼表面上看,0(t)=?1πZπ0W(x,t)Udθ(2.3)n(t)=2πZπ0W(x,t)Ucosnθdθ。(2.4)504 k·拉梅什,a . Gopalarathnam k . Granlund m . Ol和j·愛(ài)德華茲zxU交流F IGURE 2。在線(顏色)機(jī)翼速度

72、如圖所示(正面)和主的位置。機(jī)翼表面誘導(dǎo)速度正常,W(x,t),從此被稱為向下運(yùn)動(dòng),從運(yùn)動(dòng)部件運(yùn)動(dòng)學(xué)計(jì)算,描述了圖2,誘導(dǎo)速度的漩渦流場(chǎng):≡W(x,t)?φB?z=?η?x嗎?U cosα+˙hsinα+?φ列弗?x+?φtev?x。</p><p>  U sinα??˙α(x?ac)+˙hcosα??φtev?z??φ列弗?z(2.5)φB,φ列弗和φtev速度勢(shì)與束縛,前沿和后緣渦度,η(x)是在機(jī)翼曲面分

73、布,?φ列弗/?x和?φtev /?x速度誘導(dǎo)切向領(lǐng)先的和弦和后緣離散渦和?φ列弗/?z和?φtev /?z誘導(dǎo)速度正常的和弦。運(yùn)動(dòng)參數(shù)包括Z方向的速度下滑,˙h和球場(chǎng)和弦的角度對(duì)X方向,α。列弗脫落過(guò)程詳細(xì)的§2.2。tev是流在每一個(gè)時(shí)間步如前所述,和他們優(yōu)勢(shì)迭代計(jì)算,開(kāi)爾文的循環(huán)條件執(zhí)行:Γb(t)+N tevXm = 1Γtev m +N列弗Xn = 1Γ列弗n = 0(2.6)其中Γb是綁定循環(huán)計(jì)算通過(guò)整合弦向的分布

74、綁定渦度的機(jī)翼弦:Γb = Ucπ嗎?0(t)+1(t)2(2.7)</p><p>  2.1.2。LESP標(biāo)準(zhǔn)起始列弗的形成已經(jīng)知道了幾十年,主要分離的發(fā)生邊緣是由臨界流參數(shù)的前緣。埃文斯&莫特(1959)表明,尖端分離強(qiáng)直接相關(guān)逆壓力梯度,遵循在前緣吸力峰。電子床(1978)展示了一個(gè)等價(jià)的尖端分離和之間的通信前緣的流速。瓊斯& Platzer爆發(fā)(1997)研究了層流分離的前緣推介NACA

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論