版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、神經(jīng)解剖學(xué)和腦科學(xué)的研究表明,模塊化是人腦高效地進(jìn)行智能推理的關(guān)鍵。由于模式識(shí)別在本質(zhì)上是對(duì)人腦信息處理的一種模擬,因此上述模塊化認(rèn)知過程對(duì)于探討新的模式識(shí)別算法,具有重要的啟發(fā)意義。 本文首先回顧了單識(shí)別系統(tǒng)的缺陷以及人腦的模塊化特點(diǎn),介紹了在識(shí)別系統(tǒng)設(shè)計(jì)中新出現(xiàn)的幾種具有“模塊化結(jié)構(gòu)”特點(diǎn)的識(shí)別方法,以及進(jìn)行仿真評(píng)估時(shí)的應(yīng)用對(duì)象—神經(jīng)信號(hào)。接著介紹了神經(jīng)信號(hào)的檢測(cè)過程,并對(duì)神經(jīng)信號(hào)在不同動(dòng)作模式下的行為特征,結(jié)合定量分析與定
2、性比較,從時(shí)域、頻域以及時(shí)頻域的角度進(jìn)行了研究。在此基礎(chǔ)上,首先按照傳統(tǒng)的單識(shí)別系統(tǒng)設(shè)計(jì)方式,構(gòu)造了特征向量和分類器,給出了精度評(píng)估,作為對(duì)識(shí)別系統(tǒng)進(jìn)行模塊化設(shè)計(jì)的對(duì)比。隨后,從空間分解的角度,詳細(xì)闡述了如何對(duì)識(shí)別系統(tǒng)進(jìn)行模塊化設(shè)計(jì),并介紹了子模塊的選擇方法、差異性評(píng)估標(biāo)準(zhǔn),以及對(duì)子模塊輸出進(jìn)行決策時(shí)的融合方法。最后,給出了幾種對(duì)識(shí)別系統(tǒng)進(jìn)行模塊化設(shè)計(jì)的算法,并以神經(jīng)信號(hào)的運(yùn)動(dòng)識(shí)別為例,進(jìn)行了仿真評(píng)估,還將結(jié)果與單識(shí)別系統(tǒng)進(jìn)行了比較。
3、 本論文的創(chuàng)新成果主要包括:(1)借助試驗(yàn)手段,通過對(duì)志愿者上肢的神經(jīng)信息的檢測(cè),結(jié)合定性分析與定量比較,探討了上臂三大主神經(jīng)束(正中神經(jīng)、橈神經(jīng)和尺神經(jīng))的相互協(xié)調(diào)關(guān)系以及信息發(fā)放模式,獲得了有重要價(jià)值的第一手資料和創(chuàng)新性發(fā)現(xiàn),為研究神經(jīng)信號(hào)支配運(yùn)動(dòng)的機(jī)理以及神經(jīng)信息控制假肢的研究創(chuàng)造了條件。 (2)通過嚴(yán)格的統(tǒng)計(jì)計(jì)算和合理的識(shí)別系統(tǒng)設(shè)計(jì),對(duì)神經(jīng)信號(hào)的分類識(shí)別進(jìn)行了有益的嘗試,指出利用神經(jīng)埋藏電極引導(dǎo)出神經(jīng)信息,經(jīng)模式分
4、類后建立起神經(jīng)信息與肢體運(yùn)動(dòng)的映射關(guān)系,從而控制假肢運(yùn)動(dòng),是完全可行的。 (3)對(duì)神經(jīng)網(wǎng)絡(luò)隱層作用的機(jī)理進(jìn)行了探討,提出神經(jīng)網(wǎng)絡(luò)的映射關(guān)系實(shí)質(zhì)上是一種廣義級(jí)數(shù)展開,并對(duì)神經(jīng)網(wǎng)絡(luò)中傳遞函數(shù)的作用重新進(jìn)行了審視。在此基礎(chǔ)上,提出了兩次賭輪選擇算法,按照基因片段的功能劃分來對(duì)交叉部位進(jìn)行再次選擇,以避免功能相似的基因片段出現(xiàn)在同一個(gè)染色體中,防止神經(jīng)網(wǎng)絡(luò)遺傳優(yōu)化中“近親繁殖”的產(chǎn)生。仿真分析證實(shí)了該算法的有效性。 (4)從仿生
5、學(xué)原理出發(fā),根據(jù)人腦結(jié)構(gòu)和功能上的模塊化特點(diǎn),并結(jié)合對(duì)任務(wù)分解、神經(jīng)網(wǎng)絡(luò)集成、樣本抽樣技術(shù)、多專家系統(tǒng)等多個(gè)領(lǐng)域的研究,提出了對(duì)模式識(shí)別系統(tǒng)進(jìn)行“空間化分解、模塊化設(shè)計(jì)、集成化決策”的設(shè)計(jì)思想,并分別從輸入空間分解、變換空間分解、特征空間分解、決策空間分解以及輸出空間分解的角度,逐一闡述了如何在模塊化設(shè)計(jì)中獲取有差異性的個(gè)體,并通過適當(dāng)?shù)募蓚€(gè)體選擇和決策融合方法來獲得最終的識(shí)別結(jié)果。 (5)按照模塊化的設(shè)計(jì)理念,以神經(jīng)信號(hào)為對(duì)
6、象,設(shè)計(jì)了幾種模塊化的識(shí)別系統(tǒng),并將其性能與單識(shí)別系統(tǒng)進(jìn)行了比較。其中,獨(dú)立信息源法和輸出的逐級(jí)分解主要是針對(duì)神經(jīng)信號(hào)的特點(diǎn)而設(shè)計(jì)的;變換子空間法相對(duì)通用些,與上述兩種策略都屬于設(shè)計(jì)方法的創(chuàng)新;基于置信度考慮的AdaBoost.MC算法以及集成特征選擇算法FEFS則是對(duì)已有算法的改進(jìn),其中AdaBoost.MC算法的主要目的是為了增強(qiáng)低識(shí)別率情況下的穩(wěn)健性,而FEFS算法則主要是為了提高集成特征選擇過程的執(zhí)行速度;至于增強(qiáng)學(xué)習(xí)以及投票決
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于分層特征的SVM與融合決策的靜脈識(shí)別研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的調(diào)制信號(hào)識(shí)別.pdf
- 基于多特征決策融合的說話人識(shí)別研究.pdf
- 基于小波子圖與決策融合的人臉識(shí)別.pdf
- 基于決策融合與距離學(xué)習(xí)的人臉識(shí)別算法研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的病理圖像融合識(shí)別研究與實(shí)現(xiàn).pdf
- 基于多尺度與子空間的圖像融合和識(shí)別研究.pdf
- 基于信道差異和決策融合的欺騙干擾檢測(cè)識(shí)別.pdf
- 基于融合空間信息LDA的視覺對(duì)象識(shí)別研究.pdf
- 基于特征融合與深度卷積神經(jīng)網(wǎng)絡(luò)的交通標(biāo)識(shí)識(shí)別.pdf
- 信號(hào)子空間分解的FPGA實(shí)現(xiàn).pdf
- 基于決策融合和距離學(xué)習(xí)人臉識(shí)別算法的研究
- 基于分布式架構(gòu)與決策融合機(jī)制的人臉識(shí)別研究.pdf
- 人臉識(shí)別中基于貝葉斯決策融合的算法.pdf
- 基于聲音和震動(dòng)信號(hào)特征融合的車型識(shí)別研究.pdf
- 基于粗糙集與神經(jīng)網(wǎng)絡(luò)的調(diào)制信號(hào)識(shí)別研究.pdf
- 基于壓縮EMI信號(hào)與神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)損傷識(shí)別研究.pdf
- 基于多特征多分類器融合決策的印鑒識(shí)別.pdf
- 基于奇異值分解和特征融合的人臉識(shí)別.pdf
- 基于Contourlet與子空間分析的手部特征融合識(shí)別算法的研究.pdf
評(píng)論
0/150
提交評(píng)論