二階錐規(guī)劃的內(nèi)點(diǎn)算法研究.pdf_第1頁(yè)
已閱讀1頁(yè),還剩52頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、二階錐規(guī)劃(SOCP)是一類基于仿射集和有限個(gè)二階錐的笛卡爾乘積的交集上極大化或極小化一個(gè)線性函數(shù)的凸優(yōu)化問題.它作為線性規(guī)劃(LP)的推廣及半正定規(guī)劃(SDP)的特例,有著廣泛的應(yīng)用.為此,許多數(shù)學(xué)規(guī)劃問題都通過轉(zhuǎn)化成二階錐規(guī)劃進(jìn)行求解.
  本文主要討論二階錐規(guī)劃的數(shù)值解法-原始-對(duì)偶內(nèi)點(diǎn)算法,具體包括以下幾部分內(nèi)容:
  第一章:二階錐規(guī)劃簡(jiǎn)介及研究進(jìn)展.
  第二章:提出一個(gè)新的二次核函數(shù),并分析該函數(shù)的性質(zhì),

2、進(jìn)而基于該函數(shù)給出二階錐規(guī)劃的原始-對(duì)偶內(nèi)點(diǎn)算法.通過探討算法的復(fù)雜性,求出基于該二次核函數(shù)的大步校正法的理論迭代界為O(r3/4 logr/(ε)),此迭代界略好于基于對(duì)數(shù)障礙函數(shù)的理論迭代界O(r logr/(ε)).此外,我們通過數(shù)值實(shí)驗(yàn)表明了本章算法是可行有效的.
  第三章:用對(duì)數(shù)核函數(shù)φ(t)=t2-1/2-log(t)及核函數(shù)φ(t)=1/2(t-1/t)2的凸組合,構(gòu)造了另一個(gè)新核函數(shù).在證明了該核函數(shù)的性質(zhì)的基礎(chǔ)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論