版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、Modeling of a Didactic Magnetic Levitation System for Control EducationMilica B. NaumoviCAbsr~uo ~ The magnetic levitation control system of a metallicsphere is an interesting and visual impressive device successfulfor d
2、emonstration many intricate problems for controlengineering research. The dynamics of magnetic levitation systemis characterized by its instability, nonlinearity and complexity. Inthis paper some approaches to the levita
3、tion sphere modeling areaddressed, that may he validate with experimentalmeasurements.Keywords - magnetic levitation system, control engineeringeducation, system modelingI. INTRODUCTIONMagnetic levitators not only presen
4、t intricate problems forcontrol engineering research, but also have many relevantapplications. such as high-speed transportation systems andprecision bearings. From an educational viewpoint, thisprocess is highly motivat
5、ing and suitable' for laboratoryexperiments and classroom demonstrations, as reported in theengineering education literature [1]-[8].The classic magnetic levitation control experiment isprescnted in the form of labor
6、atory equipment given in Fig.1.The complete purchase of the Feedback Instruments Ltd.Maglev System 33-006 [9] is supported by WUS (WorldUniversity Service [IO]) - Austria under Grant CEP (Centerof Excellence Projects) No
7、. 115/2002. This attraction-typelevitator system is a challenging plant because of its nonlinearand unstable nature. The suspended body is a hollow steel ballof 25 mm diameter and 20 g mass. This results in a visuallyapp
8、ealing system with convenient time constants. Both analogueand digital control solutions are implemented. In addition, thesyslem is simple and relatively small, that is portable.This paper deals with the dynamics analysi
9、s of the consideredmagnetic levitation system. Although the gap between the realphysical systcm and the obtained nominal design model hascomplex structure, it should be robust stabilized in spite of modeluncertainties.II
10、. SYSTEMD ESCRIPTIONThe Magnetic Levitation System (Maglev System 33-006given in Fig. I ) is a relatively new and effective laboratory setupvery helpful for control experiments. The basic control goalis to suspend a stee
11、l sphere by means of a magnetic fieldcounteracting the force of gravity. The Maglev Systemconsists of a magnetic levitation mechanical unit (an enclosedMilica B. Nauinovic is with the Faculty of Electronic Engineering,Un
12、iversity of NE, Beogradska 14. 18000 Nil. Yugoslavia, E-mail:nmilica@elfak.ni.ac.yumagnet system, sensors and drivers) with a computer interfacecard, a signal conditioning unit, connecting cables and alaboratory manual.I
13、n the analogue mode, the equipment is self-contained withinbuilt power supply. Convenient sockets on the enclosurepanel allow for quick changes of analogue controller gain andstructure. The bandwidth of lead compensation
14、 may bechanged in order to investigate system stability and timeresponse. Moreover, user-defined analogue controllers may beeasily tested. Note, that Using the fundamental principle of dynamics, thebehaviour of the ferro
15、magnetic ball is given by the followingelectromechanical equationwhere m is the mass of the levitated ball, g denotes theacceleration due to gravity, x is the distance of the ball fromthe electromagnet, i is the current
16、across the electromagnet,and f ( x , i ) is the magnetic control force.A. Calculating the magnetic control force on the metallicsphereConsider a solenoid with an r radius, an 1 length, crossedby an I current. The' sp
17、here is located on the axis of the coilas shown in Fig. 3. The effect of the magnetic field from theelectromagnetic is to introduce a magnetic dipole in the spherewhich itself becomes magnetized. The force acting on thes
18、phere is then composed of gravity and the magnetic forceacting on the induced dipole.The magnetic control force between the solenoid and thesphere can be determined by considering the magnetic field asa function of the b
19、all's distance x from the end of the coil.The magnetic field at some given point (see Fig. 3), maybe calculated according to the Biot-Savar-Laplace formula[ l l ] . Recall, that the magnetic field produced by a small
20、segment of wire, dl , canying a current I (see Fig. 4a) isgiven byWhere u0 is the permeability of the free space and d l x r isthe vector product of vectors dl and r .Hence, the magnitude of the magnetic field becomesThe
21、 magnetic field of a circular contour with an a radius, asshown in Fig. 4b, is given byNote, that from considerations of symmetry, the fieldcomponent perpendicular to the coil axis dB, must be zero onthe axis.In order to
22、 evaluate the field due to the many turns ( N )along the axis of the coil, let n be the number of turns permetre. Also, consider the solenoid given in Fig. 3 as a series ofequidistant circular contours at the mutual dist
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---一個教學用的磁懸浮控制系統(tǒng)模型
- 外文翻譯---一個教學用的磁懸浮控制系統(tǒng)模型
- 外文翻譯---一個教學用的磁懸浮控制系統(tǒng)模型.docx
- 外文翻譯---一個教學用的磁懸浮控制系統(tǒng)模型.docx
- 磁懸浮球控制系統(tǒng).pdf
- 磁懸浮列車懸浮控制系統(tǒng)研究.pdf
- 磁懸浮平臺控制系統(tǒng)的研究.pdf
- 磁懸浮列車用直線同步電機控制系統(tǒng)的研究.pdf
- 外文翻譯---磁浮系統(tǒng)——高速磁懸浮列車系統(tǒng)
- 片狀轉(zhuǎn)子磁懸浮控制系統(tǒng)的研究.pdf
- 磁懸浮控制系統(tǒng)的分析與設計.pdf
- 車載磁懸浮DSP控制系統(tǒng)的研究.pdf
- 磁懸浮軸承控制系統(tǒng)研究.pdf
- 基于DSP的磁懸浮控制系統(tǒng)設計.pdf
- 作為一個公共實體的內(nèi)部控制系統(tǒng)組件的內(nèi)部審計【外文翻譯】
- 基于DSP的磁懸浮控制系統(tǒng)的研究.pdf
- 外文翻譯---創(chuàng)建一個高效的仿真模型
- 一個最佳執(zhí)行的過程模型【外文翻譯】
- 主動磁懸浮軸承的控制系統(tǒng)研究.pdf
- 磁懸浮軸承混合控制系統(tǒng)研究.pdf
評論
0/150
提交評論