版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Optik159(2018)283–294ContentslistsavailableatScienceDirectOptikjournalhome page:www.elsevier.de/ijleoOriginalresearcharticleLightinvariantreal-timerobusthandgesturerecognitionAnkitChaudhary a,?, J.L.Raheja ba DataScienc
2、eDivision,SchoolofComputerScience,NorthwestMissouriStateUniversity,MO,USAb Cyber-PhysicalSystems,CEERI-CSIR,RJ,Indiaa r t i cl e i nfoArticlehistory:Received25August2016Accepted22November2017Keywords:Gesturerecogn
3、itionOrientationhistogramLightintensityinvariantsystemsExtremechangeinlightintensityNaturalcomputingRobustskindetectiona bs t r ac tComputervisionhas spread over differentdomainsto facilitatedifficultoperations.
4、It worksasthe artificialeye for manyindustrialapplicationsto observeelements,process, automa-tionand to find defects.Vision-basedsystemscan also be appliedto normalhumanlifeoperationsbut changinglight condi
5、tionsis a big problemfor thesesystems.Hand ges-turerecognitioncan be embeddedwith many existing interactiveapplications/gamestomakeinteractionnaturaland easy but changingilluminationand non-uniformbackground
6、smakeit verydifficultto perform operationswith goodimage segmentation.Ifa visionbasedsystemisinstalledin publicdomain,different peoplearesupposedto work on theapplication.Thispaper demonstratesa light intens
7、ityinvarianttechniquefor hand gesture recog-nitionwhich can be easily appliedto othervision-basedapplicationsalso. The techniquehasbeen tested on differentpeople in differentlight conditionswith the extr
8、emechangeinintensity.This was done as one skin colorlooksdifferentin changedlightintensityanddifferentskin colors maylook same in changedlight intensity.Theorientationhistogramwasused to identifyuniquefeatu
9、res ofa hand gestureand itwas comparedusing super-visedANN. The overall accuracyof 92.86%is achievedin extremelight intensitychangingenvironments.©2017 ElsevierGmbH.All rightsreserved.1.IntroductionCo
10、mputervisionapplicationshavebeenpartofindustryoperationsformorethanfourdecades.Theyarehelpfulinfastingtheindustrialprocess,automatedmanydifficulttasksandalsohelpinfindingminordefects[1].Manyapplicationswereusinghandgestu
11、rerecognitiontechniquesfordifferentpurposesashandgestureprovidesanaturalwaytocommunicatewithmachines[2–5].Theseapplicationswereinitiallybasedonwiredgloves,colorstripsorchemicalstodetectaregionofinterest(ROI)smoothly.Asur
12、veyofdifferentdevicesandtechniquesusedforhandgesturerecognitioncanbefoundoutin[6].Tomakehuman-machinecommunicationmoreeffective,gesturerecognitionofbarehandhadintroducedwhereanypersoncouldusehishandinnaturalposition[7–10
13、].Alotofworkhasbeendoneintheareaofnaturalhandgesturerecognitiontomakeitmorerobust.Currently,thiskindofapplications[11]andgamesaremorepopularasauserfeelcomfortableanddon’tneedanythingtooperatethevision-basedsystem.Recentl
14、ytherehasbeenagrowinginterestinthefieldoflightintensity-invariantobjectrecognition.Foradvancedapplicationsinthisarea,onecansetupasysteminthelaboratorywithidealconditions.However,inpracticalscenarios,the? Correspondingaut
15、hor.E-mailaddresses:dr.ankit@ieee.org(A.Chaudhary),jagdish@ceeri.res.in(J.L.Raheja).https://doi.org/10.1016/j.ijleo.2017.11.1580030-4026/©2017ElsevierGmbH.Allrightsreserved.A.Chaudhary,J.L.Raheja/Optik159(2018)283–2
16、94285OrientationHistogram(OH)techniqueforfeatureextractionwasdevelopedbyMcConnell[23].Themajoradvantageofthistechniqueisthatitissimpleandrobusttolightingchanges[24].Ifwefollowpixel-intensitiesapproach,certainproblemsaris
17、eduetovaryingillumination[16].Ifpixelbypixelproximityforthesamegestureistakenfromtwodifferentimages,whiletheilluminationconditionsaredifferent,thedistancebetweenthemwouldbelarge.Insuchscenarios,thepictureitselfactsasafea
18、turevector.Themainmotivationforusingtheorientationhistogramistherequirementforlightningandpositioninvariance.Anotherimportantaspectofthegesturerecognitionisthatirrespectiveoftheorientationofthehandindifferentimages,forth
19、esamegesturewemustgetthesameoutput.Thiscanbedonebyformingalocalhistogramforlocalorientations[25].Hence,thisapproachmustberobustforilluminationchangesanditmustalsooffertranslationalinvariance.Wewouldalsoneedthegesturestob
20、ethesameregardlessofwheretheyoccurintheimage.Thepixellevelsofthehandwouldvaryconsiderablywithrespecttolight,ontheotherhand,theorientationvaluesremainfairlyconstant.We needtocalculatethelocalorientationfromthedirectionof
21、theimagegradient.Thelocalorientationangle?willbeafunctionofpositionxandy,andtheimageintensitiesI(x,y).Theangle?isdefinedas:?(x,y)=arctan[I(x,y)-I(x-1, y),I(x, y)-I(x,y-1)](1)NowformavectorФofNelements,withtheith elemen
22、tshowingthenumberoforientationelements?(x,y)betweentheangles 360 ?N [i? 12]and 360 ?N [i+ 12 ].WhereФisdefinedas:Ф(i)=?x,y{ 10 if|?(x,y)? 360 ?N i|< 360 ?N otherwise (2)3.LightinvariantsystemThehandgesturerecognitio
23、nsystemworksontheprincipleofthe2Dcomputervision.Thesystemhasaninterfacewithasmallcamerawhichcapturesusers’gestures.Theinputtothesystemisimageframeofmovinghandinfrontofacameracapturedasalivevideo.Thepreprocessingofimagefr
24、amewasdoneasdiscussedin[26]withreal-timeconstraint.TheresultingimagewouldbetheROI,onlyhandgestureimage.Nowwedoneedtofindoutfeaturevectorsfromtheinputimagetorecognizeitwiththehelpofclassifier.Asthissystemwasforresearchpur
25、poseonly,we tookonlysixdifferentgesturesinthedatasetasmanyresearchersalsohavetestedtheirmethodswithsixgesturesinthepast[21].Thesesixdifferentgestureswhichwereusedinthisresearch,areshowninFig.2.Thesystemisexpandabletohav
26、emanydifferenttypesofgestures,ifneeded.Theimagesofeachgesturewerecollectedwithdifferentskincolorandlightintensity.Oncethegesturewouldgetrecognizedthecorrespondingactiontakesplacewhichwasassociatedwithit.Inoursystem,theau
27、diodescriptionofthematchedgesturewasattachedasthecorrespondingaction.Inrecognitionofthegesture,theaudiofilecorrespondingtotherecognizedgesturewouldbeplayed.Theimplementationofthesystemisdiscussedindifferentsteps:3.1.Data
28、collectionfortrainingpurposeThetrainingimagesfortheANNwerecollectedfromdifferentsourcesincludingonlinesearchandmanuallycollection.Thiswastoensuretherobustnessofthemethodasimagesfromdifferentsourceswouldcontaindifferentsk
29、incolor,differentlightintensity,anddifferenthandshape.Skincolorhasthepropertythatitlooksdifferentindifferentlightintensities.Weused14differentimagesforeachgesturetotrainANN.3.2.Pre-processingofimagesWe needtogettheROIfr
30、omtheimageswiththerandombackgroundforthetrainingpurposeandfortherecognition.IftheimageshaveonlyROIthenthetrainingoftheANNwouldbebetter.Allimages,usedfortraining,wereconvertedintosameresolutionasthesystemcamerawascapturin
31、gtheuser’sgesture[26].3.3.FeatureextractionTotraintheANNandforgesturerecognition,thefeaturesneedtobeextractedfromthepre-processedimages.Thealgorithmusedforfeatureextractionresultsinanorientationhistogramforagivengesture.
32、Thesamealgorithmwasappliedforallthegesturespresentinthedatabaseinordertogenerateatrainingpattern.Thesetrainingpatternswerestoredandappliedtotheneuralnetworktotrainit.Forgesturerecognitionpurposethesamealgorithmwasapplied
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- [雙語(yǔ)翻譯]手勢(shì)識(shí)別外文翻譯--光照不變的實(shí)時(shí)魯棒手勢(shì)識(shí)別
- [雙語(yǔ)翻譯]手勢(shì)識(shí)別外文翻譯--光照不變的實(shí)時(shí)魯棒手勢(shì)識(shí)別中英全
- 2018年手勢(shì)識(shí)別外文翻譯--光照不變的實(shí)時(shí)魯棒手勢(shì)識(shí)別(英文).PDF
- 2018年手勢(shì)識(shí)別外文翻譯--光照不變的實(shí)時(shí)魯棒手勢(shì)識(shí)別
- 2018年手勢(shì)識(shí)別外文翻譯--光照不變的實(shí)時(shí)魯棒手勢(shì)識(shí)別.DOCX
- [雙語(yǔ)翻譯]手勢(shì)識(shí)別外文翻譯--基于fpga的實(shí)時(shí)手勢(shì)識(shí)別
- 外文翻譯---人臉識(shí)別的魯棒回歸問(wèn)題(英文)
- 基于結(jié)構(gòu)光的手勢(shì)識(shí)別技術(shù)魯棒性研究.pdf
- 外文翻譯---人臉識(shí)別的魯棒回歸問(wèn)題
- 外文翻譯---人臉識(shí)別的魯棒回歸問(wèn)題
- 手勢(shì)識(shí)別引擎系統(tǒng)中的靜態(tài)手勢(shì)識(shí)別算法研究.pdf
- 光照魯棒人臉識(shí)別研究.pdf
- 基于視覺(jué)的實(shí)時(shí)手勢(shì)識(shí)別及其應(yīng)用.pdf
- 外文翻譯---人臉識(shí)別的魯棒回歸問(wèn)題(譯文)
- 基于視覺(jué)的實(shí)時(shí)手勢(shì)識(shí)別及應(yīng)用.pdf
- [雙語(yǔ)翻譯]語(yǔ)音識(shí)別外文翻譯--自動(dòng)語(yǔ)音識(shí)別錯(cuò)誤檢測(cè)與糾正綜述(英文)
- 實(shí)時(shí)視頻中的手勢(shì)軌跡識(shí)別及其應(yīng)用.pdf
- 基于邊界信息的旋轉(zhuǎn)不變靜態(tài)手勢(shì)識(shí)別算法研究.pdf
- [雙語(yǔ)翻譯]人臉識(shí)別外文翻譯—人臉識(shí)別技術(shù)綜述(節(jié)選)
- 基于matlab的手勢(shì)識(shí)別.rar
評(píng)論
0/150
提交評(píng)論