基于邊緣檢測(cè)的圖像分割方法研究-畢業(yè)論文_第1頁(yè)
已閱讀1頁(yè),還剩44頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、本科畢業(yè)論文 本科畢業(yè)論文(科研訓(xùn)練、畢業(yè)設(shè)計(jì))題 目:基于邊緣檢測(cè)的圖像分割 目:基于邊緣檢測(cè)的圖像分割方法研究 方法研究姓 名:學(xué) 院:軟件學(xué)院系:專 業(yè):軟件工程年 級(jí):學(xué) 號(hào):指導(dǎo)教師(校內(nèi)): 職稱: 年 月IIAbstractA central problem, called image segmentation, is to distinguish objects fr

2、om background. For intensity images (ie, those represented by point-wise intensity levels) four popular approaches are: threshold techniques, edge-based methods, region-based techniques, and connectivity-preserving relax

3、ation methods.Edge detection is an important part of image segmentation. Currently edge detection methods include classical algorithms like edge detection derivative and second-order differential edge detection, and the

4、new methods based on some Modern technology. Then a detailed description of several algorithms is given, which include gradient algorithm, the algorithm Roberts, Sobel algorithm, Prewitt algorithm, the algorithm Kirsch,

5、Laplacian algorithm, Gaussian Laplacian algorithm (Laplacian of Gaussian) and Canny algorithm. And the operator of the various edge detection effect is on show throught the experimental results of a VC++.NET program. Aga

6、inst Canny algorithm, an adaptive multi-scale Canny edge detection method is given. Adaptive multiscale Canny edge detection algorithm can be anti-noise performance and the details to maintain the balance of good edge. C

7、omparing to the result of Canny edge detection, the edge that adaptive multiscale Canny edge detection algorithm detects is relatively clear, with high signal-to-noise ratio. The final article briefly introduces the mode

8、rn edge detection methods, including those based on wavelet edge detection, based on morphological edge detection, based on fractal theory of edge detection, based on fuzzy edge detection, Based on artificial intelligenc

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論