deep learning (2015), y. lecun, y. bengio and g. hinton_第1頁
已閱讀1頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、1FacebookAIResearch770BroadwayNewYkNewYk10003USA.2NewYkUniversity715BroadwayNewYkNewYk10003USA.3DepartmentofComputerScienceOperationsResearchUniversitdeMontralPavillonrAisenstadtPOBox6128CentreVilleSTNMontralQuebecH3C3J7

2、Canada.4Google1600AmphitheatreParkwayMountainViewCalifnia94043USA.5DepartmentofComputerScienceUniversityofTonto6King’sCollegeRoadTontoOntarioM5S3G4Canada.Machinelearningtechnologypowersmanyaspectsofmodernsociety:fromwebs

3、earchestocontentfilteringonsocialwkstorecommendationsonecommercewebsitesitisincreasinglypresentinconsumerproductssuchascamerassmartphones.Machinelearningsystemsareusedtoidentifyobjectsinimagestranscribespeechintotextmatc

4、hnewsitemspostsproductswithusers’interestsrelevantresultsofsearch.Increasinglytheseapplicationsmakeuseofaclassoftechniquescalleddeeplearning.Conventionalmachinelearningtechniqueswerelimitedintheirabilitytoprocessnaturald

5、ataintheirrawfm.Fdecadesconstructingapatternrecognitionmachinelearningsystemrequiredcarefulengineeringconsiderabledomainexpertisetodesignafeatureextractthattransfmedtherawdata(suchasthepixelvaluesofanimage)intoasuitablei

6、nternalrepresentationfeaturevectfromwhichthelearningsubsystemoftenaclassifiercoulddetectclassifypatternsintheinput.Representationlearningisasetofmethodsthatallowsamachinetobefedwithrawdatatoautomaticallydiscovertherepres

7、entationsneededfdetectionclassification.Deeplearningmethodsarerepresentationlearningmethodswithmultiplelevelsofrepresentationobtainedbycomposingsimplebutnonlinearmodulesthateachtransfmtherepresentationatonelevel(starting

8、withtherawinput)intoarepresentationatahigherslightlymeabstractlevel.Withthecompositionofenoughsuchtransfmationsverycomplexfunctionscanbelearned.Fclassificationtaskshigherlayersofrepresentationamplifyaspectsoftheinputthat

9、areimptantfdiscriminationsuppressirrelevantvariations.Animagefexamplecomesinthefmofanarrayofpixelvaluesthelearnedfeaturesinthefirstlayerofrepresentationtypicallyrepresentthepresenceabsenceofedgesatparticularientationsloc

10、ationsintheimage.Thesecondlayertypicallydetectsmotifsbyspottingparticulararrangementsofedgesregardlessofsmallvariationsintheedgepositions.Thethirdlayermayassemblemotifsintolargercombinationsthatcrespondtopartsoffamiliaro

11、bjectssubsequentlayerswoulddetectobjectsascombinationsoftheseparts.Thekeyaspectofdeeplearningisthattheselayersoffeaturesarenotdesignedbyhumanengineers:theyarelearnedfromdatausingageneralpurposelearningprocedure.Deeplearn

12、ingismakingmajadvancesinsolvingproblemsthathaveresistedthebestattemptsoftheartificialintelligencecommunityfmanyyears.Ithasturnedouttobeverygoodatdiscoveringintricatestructuresinhighdimensionaldataistherefeapplicabletoman

13、ydomainsofsciencebusinessgovernment.Inadditiontobeatingrecdsinimagerecognition1–4speechrecognition5–7ithasbeatenothermachinelearningtechniquesatpredictingtheactivityofpotentialdrugmolecules8analysingparticleacceleratdata

14、910reconstructingbraincircuits11predictingtheeffectsofmutationsinnoncodingDNAongeneexpressiondisease1213.Perhapsmesurprisinglydeeplearninghasproducedextremelypromisingresultsfvarioustasksinnaturallanguageundersting14part

15、icularlytopicclassificationsentimentanalysisquestionanswering15languagetranslation1617.Wethinkthatdeeplearningwillhavemanymesuccessesinthenearfuturebecauseitrequiresverylittleengineeringbyhsoitcaneasilytakeadvantageofinc

16、reasesintheamountofavailablecomputationdata.Newlearningalgithmsarchitecturesthatarecurrentlybeingdevelopedfdeepneuralwkswillonlyacceleratethisprogress.SupervisedlearningThemostcommonfmofmachinelearningdeepnotissupervised

17、learning.Imaginethatwewanttobuildasystemthatcanclassifyimagesascontainingsayahouseacarapersonapet.Wefirstcollectalargedatasetofimagesofhousescarspeoplepetseachlabelledwithitscategy.Duringtrainingthemachineisshownanimagep

18、roducesanoutputinthefmofavectofscesonefeachcategy.Wewantthedesiredcategytohavethehighestsceofallcategiesbutthisisunlikelytohappenbefetraining.Wecomputeanobjectivefunctionthatmeasurestheerr(distance)betweentheoutputscesth

19、edesiredpatternofsces.Themachinethenmodifiesitsinternaladjustableparameterstoreducethiserr.Theseadjustableparametersoftencalledweightsarerealnumbersthatcanbeseenas‘knobs’thatdefinetheinput–outputfunctionofthemachine.Inat

20、ypicaldeeplearningsystemtheremaybehundredsofmillionsoftheseadjustableweightshundredsofmillionsoflabelledexampleswithwhichtotrainthemachine.Toproperlyadjusttheweightvectthelearningalgithmcomputesagradientvectthatfeachweig

21、htindicatesbywhatamounttheerrwouldincreasedecreaseiftheweightwereincreasedbyatinyamount.Theweightvectisthenadjustedintheoppositedirectiontothegradientvect.TheobjectivefunctionaveragedoverallthetrainingexamplescanDeeplear

22、ningallowscomputationalmodelsthatarecomposedofmultipleprocessinglayerstolearnrepresentationsofdatawithmultiplelevelsofabstraction.Thesemethodshavedramaticallyimprovedthestateoftheartinspeechrecognitionvisualobjectrecogni

23、tionobjectdetectionmanyotherdomainssuchasdrugdiscoverygenomics.Deeplearningdiscoversintricatestructureinlargedatasetsbyusingthebackpropagationalgithmtoindicatehowamachineshouldchangeitsinternalparametersthatareusedtocomp

24、utetherepresentationineachlayerfromtherepresentationinthepreviouslayer.Deepconvolutionalshavebroughtaboutbreakthroughsinprocessingimagesvideospeechaudiowhereasrecurrentshaveshonelightonsequentialdatasuchastextspeech.Deep

25、learningYannLeCun12YoshuaBengio3RGB(redgreenblue)inputsbottomright).Eachrectangularimageisafeaturemapcrespondingtotheoutputfoneofthelearnedfeaturesdetectedateachoftheimagepositions.Infmationflowsbottomupwithlowerlevelfea

26、turesactingasientededgedetectsasceiscomputedfeachimageclassinoutput.ReLUrectifiedlinearunit.RedGreenBlueSamoyed(16)Papillon(5.7)Pomeranian(2.7)Arcticfox(1.0)Eskimodog(0.6)whitewolf(0.4)Siberianhusky(0.4)ConvolutionsReLUM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論