畢業(yè)設(shè)計(jì)外文翻譯--管狀帶式輸送機(jī)的參數(shù)計(jì)算和結(jié)構(gòu)設(shè)計(jì)_第1頁(yè)
已閱讀1頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  中文3150字</b></p><p><b>  英文原文</b></p><p>  Parameters Calculation and Structure Design of Pipe Belt Conveyer</p><p>  Zaimei Zhang1, Fang Zhou2,

2、 Jianheng Ji2</p><p>  1School of Mechanical Engineering, University ofJinan, Jinan 250022, Shandong Province,China</p><p>  2Departments ofInformation Engineering, Shandong Water Vocational Col

3、lege, Rizhao 276826,Shandong Province, China</p><p>  Abstract: Pipe belt conveyor is a new type of special belt conveyor and it is wildly used in conveying powder material. In the paper, the advantages of p

4、ipe belt conveyor are introduced. Calculation of pipe belt conveyor s main parameters is different from that of conventional belt conveyor s. The parameters such as throughput, belt speed, belt width, resistance, tension

5、 in belt and power are described. The length of transition</p><p>  section is analyzed because it is important to the belt life. Hexagon supporting rollers and tipping device are necessary parts ofpipe belt

6、 conveyor. The structures of them are also discussed.</p><p>  keywords: Pipe Belt Conveyor, Transition Section,Hexagon Supporting Rollers, Tipping Device </p><p>  1. Introduction</p>&l

7、t;p>  Pipe belt conveyor is a new type of special belt conveyor which developed from the conventional belt conveyor. In this conveyor, flat belt is forced to be tubular by supporting roller groups and material conveye

8、d is enveloped in it. Therefore airproof convey is realized in whole conveyance line. Pipe belt conveyor was proposed in 1964 by Japan Pipe Conveyor (JPC), and it went into real use in 1979[1] .After that, it was rapidly

9、 developed in Gennany and America and widely used abroad. But it is n</p><p>  2. The characteristics of pipe belt conveyor</p><p>  Figurel is for the structure of pipe belt conveyor. The load

10、is putted on by the feeder at the end of conveyor.</p><p>  The belt is flat when it runs through the driven roller and it is conducted by a series of supporting rollers to be tubular gradually. Thus airproo

11、f conveyance is realized. In order to discharge, the pipe is also conducted by a series of supporting rollers to be flat near the driving roller. The conveyor discharges at its head. Two-way conveyance can be realized. B

12、ut tipping device for belt must be added. Characteristics are obvious due to its special structure comparing with other belt conveyor</p><p>  (1) Unpolluted conveyance</p><p>  In pipe belt con

13、veyor, material doesn't come out and isn't influenced by environment because the belt is tubular and the two sides lap over each other. When it conveys powder, food and chemical material etc., this advantage is o

14、bvious.</p><p>  (2) Big obliquity of conveyance</p><p>  Obliquity can reach about 18 in the conventional belt conveyor. But in pipe belt conveyor, material is enveloped in pipe and friction be

15、tween material and belt is greater than before. So obliquity can be increased to 30 The bigger obliquity is, the shorter conveyance length will be. This can result in lower cost.</p><p>  (3) Two-way conveya

16、nce is convenient</p><p>  Belt can be tubular in return of pipe belt conveyor and material can be conveyed in the reverse direction by special device such as special feeder and tipping device.</p>&l

17、t;p>  (4) Conveyor bed is narrow</p><p>  In conveyance, bed is narrow because the cross section is a circle. The required building space and building steel are reduced. The bed cost is low and it can be

18、used when space is limited.</p><p>  3 .Main parameters calculation of pipe belt conveyor</p><p>  Main parameters in pipe belt conveyor are throughput, belt width, belt speed and power. But pro

19、duction throughput is always given.</p><p>  3.1 Calculation throughput</p><p>  Throughput of conveyor can be fonnulated as follows[2]:</p><p>  Where is belt speed, is the pipe

20、area, is density of material conveyed and is coefficient of material filling, = 0.44~0.8. If material size is less than one third of pipe diameter, =0.8. If material size is one third of pipe diameter, =0.75. If mater

21、ial size is half of pipe diameter, =0.58. If material size is two thirds of pipe diameter, =0.44.</p><p>  3.2 Belt speed</p><p>  Belt speed is determined by characteristic of material, throu

22、ghput, belt width and the installation method of conveyor. Generally speaking, quick belt speed is beneficial because it can reduce belt width and tension in belt when throughput is constant. This will economize on inves

23、tment in belt and power consumption. Belt speed usually used is 2~5m/s[3].</p><p>  3.3 Belt width</p><p>  Belt width can be calculated according throughput. The belt diameter can be expressed[

24、2]:</p><p>  Where d is pipe diameter.</p><p>  The lap of two sides is about one third or half of pipe diameter. When belt is tubular, the relationship between belt width and pipe diameter is a

25、s follow:</p><p>  3.4 Running resistance calculation</p><p>  The method has no difference in resistance calculation between pipe belt conveyor and conventional belt conveyor. Generally, Coeffi

26、cient of resistance is usually used in resistance calculation. Tension in belt is calculated point by point. Extrusion force is increased because material is enveloped in pipe. Therefore coefficient of resistance in pipe

27、 belt conveyor is greater than that in conventional belt conveyor.</p><p>  (1)Resistance in tangent</p><p>  Resistance in belt with load[2]:</p><p>  Resistance in belt without lo

28、ad:</p><p>  Where is resistance in running, is the unit mass of belt per meter, is the average unit mass of the upper supporting rollers per meter along the belt, is the unit mass of material per meter

29、along the belt, is the average unit mass of the below supporting rollers per meter along the belt, is the length of conveyance, is obliquity of conveyance and is coefficient of resistance in supporting rollers, showe

30、d in table 1.</p><p>  Table 1.Coefficient of resistance in supporting rollers</p><p>  (2) Resistance in curvature</p><p>  Resistance in curvature is caused by belt ossification a

31、nd friction in roller bearings. It is proportional to the tension at curvature entrance. That is[2] :</p><p>  Where is the tension in belt at curvature exit, is the tension in belt at curvature entrance a

32、nd is coefficient of resistance.</p><p>  3.5 Tension calculation in belt</p><p>  After resistance in each section has been calculated, we can calculate the tension at every point. We can divi

33、de whole path into several tangents and curvatures and number every joint before we calculate. Tension at any point is calculated by the formula as followed[2]:</p><p>  Where and are tension in belt at po

34、int and point , is resistance between point and point .</p><p>  The tension at driving roller entrance and driving roller exit can be obtained. Circumferential force on driving roller can be described b

35、y following expression:</p><p>  Where is circumferential force on driving roller, is the tension in belt at driving roller entrance and is the tension in belt at driving roller exit.</p><p>

36、  The following condition must be satisfied because the belt do not permitted to slide on driving roller[2].</p><p>  Where is the coefficient of friction between the belt and driving roller, is angle of t

37、he belt enveloping on the roller.</p><p>  3.6 Power calculation</p><p>  Power is mainly consumed in overcoming running resistance. And some power is used in elevating material in sloping conve

38、yor. Power on driving roller shaft can be calculated by the follower expression[2]:</p><p>  So the motor power is:</p><p>  Where is a factor of safety and is transmission device efficiency.&

39、lt;/p><p>  4 Structure design of pipe belt conveyor</p><p>  4.1 The length of transition section</p><p>  Figure 2 Length of transition section</p><p>  Transition sect

40、ion is shown in figure 2. The belt is flat at driving roller and driven roller. The belt is turned from flat belt into tubular one at transition section. The length of transition depends on the permissible extension of b

41、elt. If transition section is too short, additional deformation and stress will be great in both sides of belt. This will result damage to belt. If transition section is too long, distance of airproof conveyance in whole

42、 line will be shortened. Generally speaking, </p><p>  4.2 Design of supporting rollers</p><p>  Parallel supporting rollers must be used near driving roller and driven roller so that the angle

43、of the belt enveloping on the roller is big enough. But at other position in transition section trough supporting rollers are used. Thus the flat belt can become tubular one gradually and additional stress at edge of bel

44、t can be reduced. So trough angle is usually 20°,30° ,45° ,60° and 90°. Since impact load at material entrance is inevitable, three groups of cushioning supporting rollers can sever t</p>

45、<p>  Hexagon supporting rollers are widely used after the flat belt becomes tubular onel5J ? Rollers can be equipped on the same side or two sides of the supporting board. is easy to positioning rollers precisely a

46、nd the force in belt is uniform when the six rollers are equipped on the same side of supporting board. Generally speaking, the adjacent rollers spacing should not exceed the belt thickness, usually 4~8mm. If the spacing

47、 were too big, the edge of belt would jam in it. There are three roller</p><p>  Figure 3 .Rollers on same side of suppporting board</p><p>  Figure 4. Rollers on two side of suppporting board&l

48、t;/p><p>  Rigidity is greatly increased after flat belt becomes tubular. So supporting rollers spacing can also be increased. Supporting roller groups spacing with load is about 1.2m or 1.0m and it is 3.0m in

49、return in conventional conveyor, while it varies with the pipe diameter in pipe belt conveyor. The greater pipe b diameter is, the greater the spacing is[5]. The relationship etween pipe diameter and the spacing is shown

50、 in table 2[5].</p><p>  Table 2. The relationship between pipe diameter and supporting roller groups spacing</p><p>  4.3 Belt tipping device</p><p>  Remnant material on belt will

51、 pollute environment and adhere to rollers and supporting rollers after discharge. This will result to belt wear. So the same side of belt is always used when conveying material. Belt tipping device severs to overturn th

52、e belt [6]. It consists of several rollers. The belt is hold by two horizontal rollers and two vertical rollers and tum 90° Then another two horizontal rollers hold the belt and tum it 90° at the same direction

53、. Thus belt overturn is realized. The spa</p><p>  5. Conclusion</p><p>  Compared with conventional belt conveyor, pipe belt conveyor has so many advantages that it will be widely used in the f

54、uture. When calculating parameters, some formals in convention belt conveyor can be used in pipe belt conveyor, but some coefficients must be modified. The power is greater in pipe belt conveyor than in conventional belt

55、 conveyor because friction is great in pipe belt conveyor. The transition section length depends on the belt type and pipe diameter. Parallel supporting rollers</p><p>  References</p><p>  [1]

56、Kai Liu, "Application and Development of Pipe Belt Conveyor", Coal Technology, 2006,25(09): 19-21</p><p>  [2] Maton A E, "Power and Capacity Review of Tubular Pipe and Trough Conveyor",

57、Bulk Solids Handing, 1997,17(1):47-50</p><p>  [3] Zhiping Li, "Application of Pipe Belt Conveyor in Bulk Handling", Electric Power Survey &Design,2003,1:48-52</p><p>  [4] Weigang

58、 Song, Ye Yu, "The Development and Critical Techniques of the Pipe Belt Conveyor", Cement, 2005,04:42-46</p><p>  [5] Yuefeng An, "Pipe belt conveyor", S P & BMH Related engineering.

59、2006,2:39-42</p><p>  [6] Gregory A Vaka, "Pipe Conveyor---Development and Advantages", Bulk Solids Handling, 1998,18(3):451-455</p><p><b>  中文譯文</b></p><p>  

60、管狀帶式輸送機(jī)的參數(shù)計(jì)算和結(jié)構(gòu)設(shè)計(jì) </p><p>  摘要:管狀帶式輸送機(jī)是一種新型的專用帶式輸送機(jī),它可廣泛應(yīng)用于粉狀物料的運(yùn)輸。論文介紹了管狀帶式輸送機(jī)的優(yōu)點(diǎn)。計(jì)算了不同于普通帶式輸送機(jī)的管狀帶式輸送機(jī)的主要參數(shù)。描述了管狀帶式輸送機(jī)的輸送能力、帶速、帶寬、摩擦阻力、膠帶張緊力和功率。分析了過渡段長(zhǎng)度,因?yàn)樗鼘?duì)膠帶壽命很重要。六邊形托輥和傾翻裝置是管狀帶式輸送機(jī)的必要原件。它們的結(jié)構(gòu)在論文中也進(jìn)行了論述。

61、</p><p>  關(guān)鍵詞:管狀帶式輸送機(jī),過渡段,六邊形托輥,傾翻裝置</p><p><b>  1.緒論</b></p><p>  管狀帶式輸送機(jī)是在普通帶式輸送機(jī)基礎(chǔ)上發(fā)展起來的一種新型專用帶式輸送機(jī)。在該輸送機(jī)中,平直的膠帶被托輥組卷成管狀,物料被包在管狀膠帶中運(yùn)輸。因此可實(shí)現(xiàn)整個(gè)運(yùn)輸路線封閉運(yùn)輸。1964年,日本管狀輸送機(jī)公司研

62、發(fā)了管狀帶式輸送機(jī),1979年正式投入使用。隨后,該輸送機(jī)在德國(guó)和美國(guó)獲得了迅速發(fā)展和廣泛應(yīng)用。但是,中國(guó)對(duì)該輸送機(jī)未進(jìn)行深入研究,其應(yīng)用被大大限制了。</p><p>  2.管狀帶式輸送機(jī)特性</p><p>  管狀帶式輸送機(jī)結(jié)構(gòu)如圖1所示。在輸送機(jī)尾部的進(jìn)料器將物料裝載到輸送機(jī)膠帶上。</p><p>  當(dāng)膠帶通過從動(dòng)滾筒時(shí),它是平直的,然后經(jīng)一系列托輥引

63、導(dǎo),逐漸轉(zhuǎn)變?yōu)楣軤?。從而可以?shí)現(xiàn)封閉運(yùn)輸。為了卸載,管狀膠帶也需要一系列靠近驅(qū)動(dòng)滾筒的托輥引導(dǎo)從而轉(zhuǎn)變?yōu)槠街钡摹T撦斔蜋C(jī)在其機(jī)頭部卸載。它可以實(shí)現(xiàn)雙向運(yùn)輸。但是必須加設(shè)傾翻裝置。由于其特殊結(jié)構(gòu),與其他帶式輸送機(jī)相比,它的特征是很明顯的[1]。</p><p><b> ?。?)清潔運(yùn)輸</b></p><p>  在管狀帶式輸送機(jī)中,物料不會(huì)泄露出來并且不受環(huán)境的影響

64、,因?yàn)檫\(yùn)輸膠帶是管狀的,膠帶的邊緣搭接在一起。當(dāng)運(yùn)輸粉狀物料、食物和化學(xué)物料等時(shí),該優(yōu)點(diǎn)十分突出。</p><p><b> ?。?)大傾角運(yùn)輸</b></p><p>  普通膠帶運(yùn)輸機(jī)的傾角可以達(dá)到18°左右。但是,在管狀帶式輸送機(jī)中,物料被包在管狀膠帶中,物料和膠帶的摩擦力較大。因此其傾角可以增加到30°。傾角越大,運(yùn)輸長(zhǎng)度將越短。這可以使成

65、本降低。</p><p> ?。?)便利的雙向運(yùn)輸</p><p>  返回時(shí),管狀帶式輸送機(jī)膠帶可以轉(zhuǎn)變?yōu)楣軤?。通過專用進(jìn)料器和傾翻裝置,物料可以進(jìn)行反向運(yùn)輸。</p><p> ?。?)狹窄的運(yùn)輸機(jī)架</p><p>  在管狀帶式輸送機(jī)中,運(yùn)輸機(jī)架是狹窄的。因?yàn)楣軤钅z帶的橫截面是圓形的。這減少了必需的建筑空間和建筑物料。運(yùn)輸機(jī)架成本很低

66、,當(dāng)安裝空間被限制時(shí)依然可以使用。</p><p>  圖1 管狀帶式輸送機(jī)結(jié)構(gòu)</p><p>  3.管狀帶式輸送機(jī)主要參數(shù)計(jì)算</p><p>  管狀帶式輸送機(jī)的主要參數(shù)包括:輸送能力、帶寬、帶速和功率。但是輸送機(jī)輸送能力一般都是額定的。</p><p>  3.1 輸送能力計(jì)算</p><p>  管狀帶式輸

67、送機(jī)的輸送能力可以用下式表示[2]:</p><p><b>  式中,—帶速;</b></p><p><b>  —膠帶圓管截面積;</b></p><p><b>  —物料堆積密度;</b></p><p>  —裝料充滿系數(shù),取0.44~0.8。當(dāng)物料塊度尺寸<

68、1/3管徑時(shí), =0.8;當(dāng)物料塊度尺寸=1/3管徑時(shí), =0.75;當(dāng)物料塊度尺寸=1/2管徑時(shí), =0.58;當(dāng)物料塊度尺寸=2/3管徑時(shí), =0.44。</p><p><b>  3.2 帶速</b></p><p>  管狀帶式輸送機(jī)的帶速由物料特性、輸送能力、帶寬和輸送機(jī)安裝方式?jīng)Q定。一般而言,較快的帶速是有利的,因?yàn)楫?dāng)輸送能力額定時(shí),它可以減小帶寬和膠帶

69、張緊力。這可以節(jié)省膠帶材料和降低能量消耗。帶速一般取2~5m/s[3]。</p><p><b>  3.3 帶寬</b></p><p>  帶寬可以根據(jù)輸送能力計(jì)算。膠帶管徑可以表示為:</p><p><b>  式中,—膠帶管徑。</b></p><p>  膠帶邊緣搭接長(zhǎng)度大約為1/3~1

70、/2管徑。當(dāng)膠帶是管狀時(shí),帶寬和膠帶管徑關(guān)系如下:</p><p>  3.4 運(yùn)行摩擦阻力計(jì)算</p><p>  管狀帶式輸送機(jī)摩擦阻力的計(jì)算方法和普通帶式輸送機(jī)摩擦阻力的計(jì)算方法一樣。一般,摩擦系數(shù)常用于摩擦阻力計(jì)算。膠帶張緊力逐點(diǎn)計(jì)算出來。因?yàn)槲锪媳话诠軤钅z帶中,增加了對(duì)膠帶的擠壓力。因此,管狀帶式輸送機(jī)摩擦系數(shù)比普通帶式輸送機(jī)大。</p><p><

71、;b> ?。?)切向摩擦阻力</b></p><p>  加載時(shí)膠帶摩擦阻力[2]:</p><p><b>  卸載時(shí)膠帶摩擦阻力</b></p><p>  式中,—運(yùn)行摩擦阻力;</p><p><b>  —每米膠帶質(zhì)量;</b></p><p> 

72、 —上部托輥沿膠帶每米平均質(zhì)量;</p><p>  —物料沿膠帶每米質(zhì)量;</p><p>  —下部托輥沿膠帶每米平均質(zhì)量;</p><p><b>  —帶式輸送機(jī)長(zhǎng)度;</b></p><p><b>  —帶式輸送機(jī)傾角;</b></p><p>  —托輥摩擦系數(shù)

73、,見表1。</p><p><b>  表1 托輥摩擦系數(shù)</b></p><p><b> ?。?)彎曲摩擦阻力</b></p><p>  彎曲摩擦阻力是由于膠帶硬化和膠帶與滾筒軸承摩擦引起的。它與彎曲入口處的張緊力成比例。即為[2]:</p><p>  式中,—膠帶彎曲出口處的張緊力;<

74、;/p><p>  —膠帶彎曲入口處的張緊力;</p><p><b>  —摩擦系數(shù)。</b></p><p>  3.5 膠帶張緊力計(jì)算</p><p>  當(dāng)計(jì)算出每一段的摩擦阻力后,我們可以計(jì)算出每一點(diǎn)的張緊力。在我們計(jì)算前,我們可以將整個(gè)運(yùn)輸路線分成若干切線段和彎曲段,并對(duì)每一個(gè)連接點(diǎn)進(jìn)行編號(hào)。任意一點(diǎn)的張緊力均可

75、用下式計(jì)算[2]:</p><p>  式中,,—點(diǎn)、點(diǎn)處的膠帶張緊力;</p><p>  —點(diǎn)和點(diǎn)間的摩擦阻力。</p><p>  驅(qū)動(dòng)滾筒入口和出口處的皮帶張緊力可以測(cè)得。驅(qū)動(dòng)滾筒上的切向力可以用下式表示:</p><p>  式中,—驅(qū)動(dòng)滾筒切向力;</p><p>  —驅(qū)動(dòng)滾筒入口處膠帶張緊力;</

76、p><p>  —驅(qū)動(dòng)滾筒出口處膠帶張緊力。</p><p>  因?yàn)椴辉试S膠帶在驅(qū)動(dòng)滾筒上滑動(dòng),所以必須滿足下列條件[2]:</p><p>  式中,—膠帶和驅(qū)動(dòng)滾筒摩擦系數(shù);</p><p>  —膠帶在驅(qū)動(dòng)滾筒上的圍包角。</p><p><b>  3.6 功率計(jì)算</b></p>

77、;<p>  功率主要消耗在克服運(yùn)行摩擦阻力上。一部分功率用于傾斜輸送機(jī)的物料提升。驅(qū)動(dòng)滾筒功率可以用下式計(jì)算[2]:</p><p><b>  因此電動(dòng)機(jī)功率為:</b></p><p><b>  式中,—安全系數(shù);</b></p><p><b>  —傳動(dòng)效率。</b><

78、/p><p>  4.管狀帶式輸送機(jī)結(jié)構(gòu)設(shè)計(jì)</p><p><b>  4.1過渡段長(zhǎng)度</b></p><p><b>  圖2 過渡段長(zhǎng)度</b></p><p>  管狀帶式輸送機(jī)的過渡段如圖2所示。驅(qū)動(dòng)滾筒和從動(dòng)滾筒之間的膠帶是平形的,而在過渡段,膠帶的形狀由平形轉(zhuǎn)變?yōu)楣軤?。過渡段的長(zhǎng)度由膠帶

79、的最大允許伸長(zhǎng)量決定,如果過渡段過短,其兩面的附加變形和附加應(yīng)力都比較大,這會(huì)導(dǎo)致膠帶損壞。如果過渡段過長(zhǎng),輸送裝置的封閉輸送線路部分就會(huì)變短。一般來說,材料為尼龍帆布時(shí)其過渡段的長(zhǎng)度為25倍的直徑,而材料為鋼繩芯時(shí),其過渡段長(zhǎng)度應(yīng)為50倍的直徑[3]。</p><p><b>  4.2 托輥的設(shè)計(jì)</b></p><p>  為了確保滾筒的圍包角足夠大,平行的托輥

80、必須安裝于驅(qū)動(dòng)滾筒與從動(dòng)滾筒之間。但是在過渡段的其它位置,所使用的托輥為槽形托輥。因此,平膠帶可逐漸變?yōu)楣軤钅z帶,而且膠帶邊緣的附加應(yīng)力也會(huì)降低。槽角一般為20°,30°,45°,60°和90°。由于物料入口處所受到的沖擊是不可避免的,因此安裝三組緩沖托輥以減小其沖擊的強(qiáng)度,緩沖托輥的間距約為300~500mm[4]。</p><p>  當(dāng)膠帶形狀由平形變?yōu)楣軤?/p>

81、后,可以使用六邊形托輥對(duì)膠帶進(jìn)行支撐。六邊形托輥可以固定于支撐板的同側(cè)或異側(cè),因此當(dāng)有六個(gè)托輥安裝于支撐板的同側(cè)時(shí),這樣就便于精確固定托輥從而使膠帶分布均勻。一般情況下,相鄰?fù)休佒g的距離不應(yīng)超過膠帶4~8mm。如果間距過大,膠帶邊緣將會(huì)出現(xiàn)堵塞現(xiàn)象。當(dāng)托輥安裝于支撐板異側(cè)時(shí),每側(cè)的托輥數(shù)量均為三個(gè)。</p><p>  托輥的長(zhǎng)度應(yīng)大于正六邊形的邊長(zhǎng),這樣膠帶就不會(huì)在相鄰?fù)休侀g堵塞。另外,可以使支撐板上的壓力均

82、衡。支撐板上的托輥分布如圖3、圖4所示。</p><p>  圖3. 同側(cè)支承板上的托輥分布</p><p>  圖4. 異側(cè)支承板上的托輥分布</p><p>  此外,當(dāng)膠帶形狀由平形變?yōu)楣軤詈?,其剛度將大大增加,因此托輥間距同樣也須增加。隨著膠帶管徑的變化,托輥組的間距一般為1.2m或1.0m,而在常規(guī)的輸送機(jī)中該距離為3.0m。膠帶管徑越大,間距越大,二者的

83、變化關(guān)系如表2所示[5]。</p><p>  表2 管徑和托輥組間距的關(guān)系</p><p>  4.3 膠帶傾翻裝置</p><p>  當(dāng)運(yùn)料結(jié)束后,膠帶上的剩余物料將粘在滾筒上,污染環(huán)境,磨損膠帶。在輸送物料時(shí),使用的一般總是膠帶的同一側(cè)。膠帶傾翻裝置是用來傾翻膠帶的,該裝置是由幾個(gè)滾輪組成。膠帶的固定是通過兩個(gè)水平滾輪和垂直滾輪實(shí)現(xiàn)的,然后另外的兩個(gè)水平滾輪

84、就可對(duì)膠帶進(jìn)行90°的同側(cè)傾翻,即可實(shí)現(xiàn)翻帶。水平滾輪和垂直滾輪的間距由膠帶寬度和操作條件而決定。</p><p><b>  5.結(jié)論</b></p><p>  與普通帶式輸送機(jī)相比,管狀帶式輸送機(jī)有很多優(yōu)點(diǎn),因此,它將獲得廣泛的應(yīng)用。當(dāng)計(jì)算參數(shù)時(shí),用于普通帶式輸送機(jī)參數(shù)計(jì)算的一些公式也可以用于管狀帶式輸送機(jī)參數(shù)計(jì)算,但是必須對(duì)一些系數(shù)進(jìn)行修正。因?yàn)楣軤?/p>

85、帶式輸送機(jī)的摩擦阻力比普通帶式輸送機(jī)大,所以它的功率較大。過渡段的長(zhǎng)度由膠帶的類型和管徑?jīng)Q定。普通帶式輸送機(jī)中的平直托輥和槽形托輥也可以用于管狀帶式輸送機(jī)。但是槽形角隨著槽形托輥的安裝位置而變化。六邊形托輥和傾翻裝置僅適用于管狀帶式輸送機(jī)。它們的結(jié)構(gòu)在論文中進(jìn)行了描述。托輥組的間距也隨管徑而變化。</p><p><b>  參考文獻(xiàn)</b></p><p>  [1

86、]劉凱,管狀帶式輸送機(jī)的應(yīng)用與發(fā)展,煤炭科技,2006,25(09);19-21</p><p>  [2] Maton A E,管狀帶式輸送機(jī)和槽形帶式輸送機(jī)功率電容對(duì)比,散裝固體運(yùn)輸,1997,17(1):47-50</p><p>  [3]李志平,管狀帶式輸送機(jī)在散裝固體運(yùn)輸中的應(yīng)用,電力勘測(cè)與設(shè)計(jì),2003,1:48-52</p><p>  [4]宋衛(wèi)剛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論