外文翻譯--纖維對袋式除塵器的清灰除塵效率的影響(節(jié)選)_第1頁
已閱讀1頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  1900單詞,10500英文字符,3400漢字</p><p>  出處:Bao L, Musadiq M, Kijima T, et al. Influence of fibers on the dust dislodgement efficiency of bag filters[J]. Textile Research Journal, 2014, 84(7):764-771.<

2、/p><p>  畢 業(yè) 設 計(論 文)附 件</p><p>  外 文 文 獻 翻 譯</p><p>  學 號: 姓 名: </p><p>  所在院系: 動力與機械工程 專業(yè)班級: </p><p>  

3、指導教師: </p><p>  原文標題: 袋式除塵器的設計 </p><p>  Influence of Fibers on the Dust Dislodgement Efficiency of Bag Filters</p><

4、;p>  L. Bao,1 M. Musadiq,1 T. Kijima,2 and K. Kenmochi1</p><p>  *1 Faculty of Textile Science and Technology, Shinshu University , 3-15-1 Tokida Ueda-shi, Nagano-ken 386-8567 Japan *2 Nihon Spindle Manuf

5、acturing Co., Ltd., 4-2-30 Shioe, Amagasaki-city, Hyogo, 661-8510, Japan</p><p><b>  Abstract</b></p><p>  In recent years, non-woven bag filters have been used in waste incinerators

6、 for efficient collection of dust and removal of detrimental gas. However, dust dislodgement efficiency decreases with time until the bag filters are no longer useable. Dust adhering to the fabric is a major determinant

7、of bag filter life. In this study, a flat filter was used to study the relationship between various parameters of a bag filter’s structure and dust dislodgement efficiency. The results confirm that fiber l</p><

8、;p>  Higher fiber linear density in a bag filter prevents dust from penetrating the filter, thus helping the filter to dislodge dust easily. Application of various forms of fiber cross-section indicated that with the

9、same fiber linear density, the triangular form was better than a circular form. A lower Young's modulus allows the fiber to bend easily and prevents the dust from penetrating the bag filter. Fiber linear density, fib

10、er modulus of elasticity, and fiber cross-section form are thus the elem</p><p>  Key words:Bag filter, Fiber linear density, Fiber modulus of elasticity, Dust dislodgement efficiency, Residual pressure<

11、/p><p><b>  loss.</b></p><p>  INTRODUCTION</p><p>  With the rapid development of industrial activities, harmful substances beyond the purification ability of nature have

12、been discharged, and their influence on our living environment and the ecosystem has become a major problem. Therefore, various countermeasures have been adopted at industrial sites in an effort to prevent atmospheric po

13、llution. Dust-collection technology to separate dust in the air flow from the air flow discharged from production equipment is one such countermeasure. Currently</p><p>  As illustrated in Fig. 1, a bag filt

14、er uses the outer surface of a filter (backing fabric lined with felt on both sides) as the filtering face, and dust gas is filtered through this surface. Dust is dislodged by jetting pulsated compressed air onto the inn

15、er side of the filter. Accumulated dust is peeled off using the power of compressed air and by deformation of the filter. Bag-filter dust collectors are currently the most widely used dust collectors because of their hig

16、h dust-collecting effici</p><p>  Many studies have focused on the dust-collecting characteristics of the bag filter, and the Association of Powder Industry and Engineering, Japan1 has contributed greatly to

17、 the design and operation of dust collectors by summarizing these studies. However, the use of pulsed jet air to dislodge dust from the filter is essential for continuous operation of dust collectors. Improvement of dust

18、 dislodgement efficiency increases the service life of bag filters and decreases their running cost. Thus, </p><p>  More studies have addressed dust collection than the factors that influence dust dislodgem

19、ent efficiency. However, several researchers have reported on this topic. Hindy et al.2 investigated the relationship between the differential pressure with acceleration in the filter section and the dust dislodgement ef

20、ficiency of a cylindrical bag filter. The weight per area of the filter influences dust dislodgement efficiency. Simon et al.3 investigated the influence of nozzle size and jetting position </p><p>  In this

21、 study, we focused on the influence of the fiber structure of the felt bag filter (diameter, form, and Young’s modulus of fiber) on dust dislodgement efficiency in an effort to improve the dust dislodgement efficiency of

22、 bag filters. We prepared bag filters with different parameters, conducted dust dislodgement experiments, examined the influence of fiber structure on dust dislodgement efficiency, and explored its mechanism.</p>

23、<p>  Experimental</p><p>  Construction of Bag-Filter Samples</p><p>  To investigate the influence of fiber characteristics on the bag filter efficiency performance, six types of bag filt

24、er for dust collection in blast furnaces (Table 1) were provided by the Japan Spindle Co., Ltd., or manufactured as prototypes. The felt fiber is polyester for all types. Sample 1 is a commercially available reference pr

25、oduct. Samples 1, 3, and 6 vary in fiber linear density (2.2, 1.7, and 1.4dtex) but have the same values of other parameters. Samples 2, 3, and 5 vary in fiber str</p><p>  Description of Test Equipment</

26、p><p>  The dust-collection equipment (Fig. 2) used in this study conforms to Japanese Industrial Standard (JIS) Z 8909-1. This equipment consists of a dust feeder, a dispersion unit, a bag filter, a discharge

27、fan, a jet-pulse cleaning system, and a system for measuring pressure loss and flow flux.</p><p>  The filter sample was fixed on a frame (13) and set between the clean side and the dust side. Dust was added

28、 to the dust supply vessel (8), and the filtration process began. The total filtration surface area was 0.314m2. Filtration was conducted until the pressure loss reached 1000Pa ( control), at which time the dust dislodge

29、ment process began. After pulse injection, the pressure loss (ΔPcollect) of the filter was measured. The filtration experiment conditions are presented in Table 2, and the </p><p>  Fig. 3 illustrates the re

30、lationship between pressure loss and time. Here, Pinitial is the pressure loss of a new filter medium. As filtration continues, pressure loss increases until it reaches the control pressure loss (ΔPcontrol) of 1000Pa; th

31、en the dust dislodgement process begins. After the dust is dislodged, the pressure loss decreases, and filtration starts again. When a new filter is applied, its initial pressure loss ( PInitial) is low. The residual pre

32、ssure loss (ΔPci) increases during </p><p>  To ensure that a new filter is like a filter that has been used on an actual machine (dust penetrates the filter) within a short time, more dust was made to stick

33、 to the filter by the vibration and air flow proposed in our last report7 using the sticking accelerating test equipment, which makes dust quickly penetrate the filter (Fig. 4). The pressure of the gas diffusion section

34、is set to 500Pa. A mass of dust (40g) is applied on the filter. With gas diffused, the filter is vibrated for 48hrs to</p><p>  Experiment Description</p><p>  Tests were conducted in several st

35、ages. During the first stage, the dust dispersion vessel was disconnected, and the pressure loss of a new filter medium (ΔPinitial) was recorded for a flow of clean air. Injected compressed air was then discharged, and t

36、he responses of the various sensors were recorded. The purpose of this first series of experiments was to determine the reaction of a new filter medium to jet-pulse injection of compressed air.</p><p>  The

37、second stage involved loading the filter medium onto the shaking device. With gas diffused, the filter is vibrated for 48h to accelerate the penetration of dust into the filter. After the filter medium was processed by t

38、he shaking device, the filtration and dust dislodgement processes were conducted for 10 cycles for each filter medium. The residual pressure loss (ΔPci) of the filter medium was recorded, and the dust dislodgement effici

39、ency (η) was determined by the equation below.</p><p>  Six samples are used for each filter sample.</p><p>  Mechanical properties of the filter’s fiber sample were determined by Auto Graph (AG

40、-20KND) with a load</p><p>  cell (1N) manufactured by Shimadzu Corporation. The sample length is 100mm, and the test speed is 2mm/min. The fiber Young's modulus is determined. Ten samples are used for e

41、ach fiber sample.</p><p>  RESULTS AND DISCUSSION</p><p>  Influence of Fiber Diameter</p><p>  The fiber aggregate in the bag filter greatly influences the dust collection of the d

42、ust collector: A smaller fiber diameter yields better dust-collection.1 Dust dislodgement efficiency was measured for Samples 1, 2, and 6 to investigate the influence of fiber diameter on the dust dislodgement efficiency

43、 of the bag filter.</p><p>  The filter is made of polyester with a fiber density of 1.38×103 kg/ m3. The diameter of the fiber of Sample 1 is 14.2μm; that of Sample 2 is 12.4μm; and that of Sample 6 is

44、 11.3μm. Figure 5 compares the dust dislodgement efficiencies of samples with different fiber diameters. The horizontal axis represents the fiber diameter. Samples 2 and 6 have fibers that are thinner than that of Sample

45、 1 (commercial product). The other parameters are about the same.</p><p>  A greater fiber diameter produces a lower dust dislodgement efficiency. In Sample 6, the dust dislodgement efficiency improved by 1.

46、3 times that of Sample 1, confirming that filters with lower fiber linear density have higher dust dislodgement efficiency. Filters with low fiber linear density have a large surface area of fibers; thus, dust easily acc

47、umulates on the fiber surface (i.e., on the surface of the felt) and is easily dislodged.</p><p>  Furthermore, the second moment of the fiber area becomes smaller because of low fiber linear density; theref

48、ore, fibers are easily deformed by bending. Fibers easily fall forward with the pressure of dust collection and then form layers (Fig. 6). As a result, the clearance between fibers decreases, and it is difficult for dust

49、 to penetrate inside the felt; instead, it accumulates on the surface. Fibers are easily bent when dust is dislodged, and they deform along the flow channel. Therefore, the</p><p>  Dust accumulation inside

50、the filter after the dust collection and dislodgment test is examined using a microscope (VW-6000, KEYENCE Co., Ltd.). Figure 7(a) presents a photo of the cross-section of Sample 1 filter, the reference product. Dust acc

51、umulates significantly on the surface of the filter to a depth of 1/4 of the cloth thickness. Figure 7(b) is a photo of the cross-section of Sample 2 filter. The dust penetrates less than in Sample 1 and can be easily re

52、moved; thus, dust dislodgement effi</p><p>  纖維對袋式除塵器的清灰除塵效率的影響</p><p><b>  摘要</b></p><p>  近年來,無紡布袋式除塵器用于廢物焚化爐高效收集灰塵和去除有害氣體。然而,清灰除塵的效率隨時間的變化使得袋式除塵器不再可用。塵埃在織物上的附著多少是袋式除塵

53、器壽命長短的主要決定因素。在這項研究中,一個平面濾波器被用于研究各種參數(shù)(袋式除塵器的結構和清灰除塵效率)之間的關系。結果證實, 在袋式除塵器中,纖維線密度、纖維彈性模量和氈制的纖維截面的形式影響著粉塵變位,從而影響袋式除塵器的效率。</p><p>  高纖維線密度的袋式除塵器可以防止灰塵穿過除塵器,從而輕易的幫助除塵器驅逐塵埃。對各種形式的纖維截面的應用表明,相同的纖維線密度,三角形式比圓形更好。較低的楊氏模

54、量使纖維很容易彎曲,從而防止塵埃穿過袋式除塵器。所以纖維線密度、纖維彈性模量和纖維截面形式是影響袋式除塵器效率的元素。</p><p>  關鍵詞:袋式除塵器,纖維線密度,纖維的彈性模量,清灰除塵效率、殘余壓力的損失。</p><p><b>  引言</b></p><p>  隨著工業(yè)活動的迅速發(fā)展,超過自然凈化能力的有害物質已經(jīng)排放,并且

55、他們對我們的生活環(huán)境和生態(tài)系統(tǒng)的影響已成為一個主要的問題。因此,在工業(yè)場所采取了不同的對策,以防止大氣污染。使用除塵技術將排放出生產(chǎn)設備的空氣氣流中的灰塵分離,就是其中的一個對策。目前,袋式除塵器收塵器通常用于垃圾焚燒設施和高爐。</p><p>  如圖 1 所示,袋式除塵器使用篩選器 (支持織物內襯雙邊) 的外表面作為除塵的面,并通過此表面除塵、凈化含塵氣體。噴射脈動壓縮空氣將灰塵吹到除塵器內側的一面。壓縮空

56、氣的力量和形狀突然變化的除塵器使積累的灰塵被剝落下來。因為它高效的集塵效率和較低的投資成本,袋式除塵器是目前使用最廣泛的粉塵收集器。</p><p>  有許多研究把重點放在了袋式除塵器的除塵特點,和粉塵有聯(lián)系的工程和工業(yè),通過總結這些研究,日本1在對塵埃收集器的設計和操作方面作出了重大貢獻。然而,將灰塵從除塵器吹下的使用脈沖的射流空氣對除塵器的連續(xù)運行至關重要。塵埃移動效率的提高,同時提高了袋式除塵器的使用壽命

57、,并降低運行成本。因此,集塵和塵埃的移動是很重要的。</p><p>  許多研究已經(jīng)在研究解決影響清灰而不是集塵效率的因素。然而,一些研究人員也曾報告過這一主題。辛迪等人2研究調查在除塵器部分中的不同壓差與加速度之間的關系,還研究在圓柱袋式除塵器中不同壓差與除塵清灰效率之間的關系。除塵器單位面積的重量影響著除塵清灰效率。西蒙等人3就噴嘴大小和噴射位置對運動的圓柱袋式除塵器的影響進行了研究。丹尼斯等人4研究了除塵

58、材料的表面對除塵器運動的影響。根據(jù)這些研究,表明材料和除塵材料的表面處理是影響除塵清灰效率的因素。艾倫貝克爾等人5在實驗中使用平面濾波器并調查塵埃移動效率和布的加速度之間的關系。他們證明了當加速度增加,塵埃移動效率隨之提高,并在有大量的積累灰塵情況下,效率迅速提高。丹尼斯等人6通過撞擊除塵器上積塵的方式,發(fā)現(xiàn)更大的累積灰塵和更高的碰撞加速度能產(chǎn)生更高的塵埃移動效率。除此之外,他們報告說,為了清灰,高的加速度必須持續(xù)不斷運動。試驗者們7提

59、出了一種多脈沖噴射系統(tǒng),其中脈沖參數(shù)隨當前所使用的塵埃變位系統(tǒng)的變化而單獨變化。結果表明,如果消耗相同的空氣量清灰除塵,我們所建議的多脈沖除塵移動系統(tǒng)的除塵清灰效率比之前提高了10%。然而,很少有研究關注袋式除塵器結構</p><p>  在這項研究中,我們側重關注纖維結構(纖維的直徑、形式、以及其楊氏模量)對毛氈式袋式除塵器清灰除塵效率的影響以提高袋式除塵器的清灰除塵效率。我們準備好了不同的參數(shù)的濾袋,進行清灰

60、除塵實驗,研究纖維結構對清灰除塵效率的影響,并探討其機制。</p><p><b>  實驗</b></p><p>  袋式除塵器樣品的建設</p><p>  探討纖維特性對除塵器除塵效率性能的影響,六種用于高爐除塵類型的袋式除塵器(表 1) 的原型都由日本主軸有限公司生產(chǎn)或提供。毛氈的纖維所有類型的聚酯都有。示例 1 是商業(yè)上可用的引用產(chǎn)

61、品。樣本 1、 3 和 6 在纖維線密度 (2.2、 1.7 和 1.4分特克斯) 會發(fā)生變化,但具有相同的值的其他參數(shù)。樣本 2、 3 和 5 中纖維強度 (制造商的值) 不同,但具有相同的值的其他參數(shù)。樣本 1 和 4 的纖維橫斷面形式會發(fā)生變化;示例 4 是三角形。該除塵器的厚度為 2 毫米,和袋式除塵器的密度是 300 公斤/m3±2,除塵器的孔隙率是 0.782。</p><p><b&

62、gt;  試驗設備的描述</b></p><p>  在本研究中使用的集塵設備 (圖 2) 符合對日本工業(yè)標準 (JIS) Z 8909-1。本設備由一個灰塵供給器、 一個分散裝置、 一個袋式除塵器、 一個抽風機、 一個射流脈沖清洗系統(tǒng),和一個用于測量壓力損失和流體流量的系統(tǒng)組成。</p><p>  除塵器示例是固定在一個框架 (13) 并設置在無灰塵與有灰塵的中間。灰塵被添

63、加到塵埃供應容器內 (8),緊接著除塵過程開始??偝龎m面積是 0.314m2。除塵一直進行直到壓力損失達到量 1000Pa (ΔP控制),在這段時間的灰塵移動過程開始。脈沖注射后,測定除塵器的壓力損失 (ΔP控制)。除塵實驗的條件都列在表2中 ,灰塵移動實驗的條件都列在表3中。</p><p>  圖 3 說明了壓力損失與時間的關系。在這里,P最初的 是一種新的除塵介質的壓力損失。隨著除塵的繼續(xù),壓力損失增加,直

64、到它達到壓力損失 (ΔP控制) 的控制量,即1000Pa;然后灰塵移動過程開始。塵埃脫落后,壓力損失減小,并重新開始除塵過程。當使用新的除塵器時,其初始壓力損失 (P最初的) 很低。剩余壓力損失(ΔPci) 隨著除塵期間由于未被除塵出的灰塵的不斷積累而不斷增加。殘余壓力損失和壓力損失 (ΔP控制) 的控制值之間差異減小,就必須用射流空氣脈動或增加耗電功率的方式來使灰塵頻繁脫落,這樣還會降低除塵器的使用壽命。</p><

65、;p>  為確保新除塵器就像一個曾經(jīng)被用于一個實際的機器(使塵埃穿過除塵器)上的除塵器一樣,在很短的時間內,通過震動和在上次報告7中提到的空氣流使更多的塵埃粘黏在除塵器上,采用粘貼加速試驗設備能使灰塵迅速滲透除塵器(圖4)。氣體擴散部分的壓力設置為500Pa。一團灰塵(40 g)被用于除塵器。隨著氣體的擴散,除塵器通過48小時不停的振動來加速灰塵滲透穿過除塵器。</p><p><b>  2.3

66、 實驗描述</b></p><p>  在幾個階段進行了試驗。在第一階段,灰塵分散容器斷開連接,記錄使用一種新的塵埃除塵介質除塵出干凈空氣時的壓力損失(ΔP最初的)。注入壓縮空氣緊接著排放,并記錄各種傳感器的反應。這第一系列試驗的目的是確定新的除塵介質對射流脈沖注入壓縮空氣的反應。</p><p>  第二階段涉及加載了除塵介質的振動設備。隨著氣體的擴散,除塵器通過48小時不停

67、的振動來加速灰塵滲透穿過除塵器。除塵介質由振動設備處理后,每個除塵介質進行了10次除塵和清灰除塵過程。記錄下除塵介質的殘余壓力損失 (ΔPci),并由下面的公式推導出清灰除塵效率(η)。</p><p>  六個樣品都用于除塵器示例</p><p>  除塵器的纖維樣品的力學性能是由日本島津公司制造的自動圖表 (AG-20KND)使用負載單元格 (1N)測定。樣品長度是100毫米,測試速度

68、是2毫米/分鐘。纖維的楊氏模量也被確定了。十個樣品被用于每個纖維樣品里。</p><p><b>  結果與討論</b></p><p><b>  纖維直徑的影響</b></p><p>  袋式除塵器的聚合纖維極大地影響除塵器除塵:一個較小的纖維直徑會有更好的除塵效果。1使用清灰除塵效率來衡量樣本1,2,6,來探討纖維

69、直徑對袋式除塵器的清灰除塵效率的影響。</p><p>  除塵器是由纖維密度為1.38×103公斤/立方米的聚酯構成。樣品1的纖維直徑是14.2μm;樣品2是12.4μm;樣品6是11.3μm。圖5對照了樣品的清灰除塵效率和不同的纖維直徑。水平軸代表纖維直徑。樣品2和樣品6的纖維比示例1(商業(yè)產(chǎn)品) 的薄。其他的參數(shù)都是一樣的。</p><p>  越大的纖維直徑會造成越低的清

70、灰除塵效率。在樣例6中, 清灰除塵的效率是樣品1的1.3倍,證明了除塵器的纖維線密度越低,清灰除塵效率越高。纖維線密度低的除塵器有很大的纖維表面積,因此,灰塵容易積累在纖維表面(即毛氈的表面),并且很容易脫落。</p><p>  此外, 因為纖維線密度低,纖維的二階矩區(qū)域變得越來越小;因此,纖維很容易彎曲變形。在除塵的壓力下,纖維容易下降并形成層(圖6)。結果就是纖維之間的間隙減少,灰塵很難從里面穿透毛氈面;相

71、反,它會在表面不斷積累。塵埃脫落時纖維很容易彎曲,它們會沿著流道發(fā)生變形。因此,塵埃是被穿透的液體一同攜帶穿過纖維并且脫落的。我們假設當空氣脈沖應用時,表面積累灰塵會使灰塵更容易被除去;因此,清灰除塵效率提高。</p><p>  在除塵除塵和移動測試后使用顯微鏡(大眾- 6000,日本基恩士有限公司)檢查灰塵的積累情況。圖7(a)展示了一個示例1除塵器的截面的照片用于參考產(chǎn)品。表面的灰塵積累深度達到了除塵器布的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論