外文翻譯--機器零件的設計_第1頁
已閱讀1頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  畢業(yè)設計(論文)外文資料翻譯</p><p>  系  部: 機械工程系 </p><p>  專 業(yè): 機械工程及自動化 </p><p>  姓 名: </p><p>  學 號

2、: </p><p>  外文出處: Design of machine elements </p><p>  附 件:1.外文資料翻譯譯文;2.外文原文。 </p><p>  附件1:外文資料翻譯譯文</p><p><b>

3、;  機器零件的設計</b></p><p>  相同的理論或方程可應用在一個一起的非常小的零件上,也可用在一個復雜的設備的大型相似件上,既然如此,毫無疑問,數學計算是絕對的和最終的。他們都符合不同的設想,這必須由工程量決定。有時,一臺機器的零件全部計算僅僅是設計的一部分。零件的結構和尺寸通常根據實際考慮。另一方面,如果機器和昂貴,或者質量很重要,例如飛機,那么每一個零件都要設計計算。</p&g

4、t;<p>  當然,設計計算的目的是試圖預測零件的應力和變形,以保證其安全的帶動負載,這是必要的,并且其也許影響到機器的最終壽命。當然,所有的計算依賴于這些結構材料通過試驗測定的物理性能。國際上的設計方法試圖通過從一些相對簡單的而基本的實驗中得到一些結果,這些試驗,例如結構復雜的及現代機械設計到的電壓、轉矩和疲勞強度。</p><p>  另外,可以充分證明,一些細節(jié),如表面粗糙度、圓角、開槽、制

5、造公差和熱處理都對機械零件的強度及使用壽命有影響。設計和構建布局要完全詳細地說明每一個細節(jié),并且對最終產品進行必要的測試。</p><p>  綜上所述,機械設計是一個非常寬的工程技術領域。例如,從設計理念到設計分析的每一個階段,制造,市場,銷售。以下是機械設計的一般領域應考慮的主要方面的清單:</p><p> ?、僮畛醯脑O計理念 ②受力分析 ③材料的選擇 ④外形

6、 </p><p> ?、葜圃?⑥安全性 ⑦環(huán)境影響 ⑧可靠性及壽命</p><p>  在沒有破壞的情況下,強度是抵抗引起應力和應變的一種量度。這些力可能是:</p><p> ?、贊u變力 ②瞬時力 ③沖擊力 ④不斷變化的力 </p><p><b> ?、轀夭?lt;/b>

7、;</p><p>  如果一個機器的關鍵件損壞,整個機器必須關閉,直到修理好為止。設計一臺新機器時,關鍵件具有足夠的抵抗破壞的能力是非常重要的。設計者應盡可能準確地確定所有的性質、大小、方向及作用點。機器設計不是這樣,但精確的科學是這樣,因此很難準確地確定所有力。另外,一種特殊材料的不同樣本會顯現出不同的性能,像抗負載、溫度和其他外部條件。盡管如此,在機械設計中給予合理綜合的設計計算是非常有用的。</p&

8、gt;<p>  此外,顯而易見的是一個知道零件是如何和為什么破壞的設計師可以設計出需要很少維修的可靠機器。有時,一次失敗是嚴重的,例如高速行駛的汽車的輪胎爆裂。另一方面,失敗未必是麻煩。例如,汽車的冷卻系統(tǒng)的散熱器皮帶管松開。這種破壞的后果通常是損失一些散熱片,可以探測并改正過來。零件負載類型是一個重要的標志。一般而言,變化的動負載比靜負載會引起更大的差異。因此,疲勞強度必須符合。另一個關心的方面是這種材料是否直或易碎。

9、例如有疲勞破壞的地方不易使用易碎的材料。一般的,設計師要靠考慮所有破壞情況,其包括以下方面:</p><p>  ①應力 ②應變 ③外形 ④腐蝕 ⑤震動 ⑥外部環(huán)境破壞 ⑦緊固件的松脫</p><p>  零件的尺寸和外形的選擇也有很多因素。外部負荷的影響,如幾何間斷,由于輪廓而產生的殘余應力和組合件干涉。</p><p&

10、gt;<b>  材料的機械性能</b></p><p>  材料的機械性能可以被分成三個方面:物理性能,化學性能,機械性能。</p><p><b>  物理性能</b></p><p>  密度或比重、溫度等可以歸為這一類。</p><p><b>  化學性能</b>&l

11、t;/p><p>  這一種類包括很多化學性能。其中包括酸堿性、化學反應性、腐蝕性。其中最重要的是腐蝕性,在外行人看來,腐蝕性被解釋為在某處的零件抵抗腐蝕的能力。</p><p><b>  機械性能</b></p><p>  機械性能包括拉伸性能、壓縮性能、剪切性能、扭轉性能、沖擊性能、疲勞性能和蠕變。材料的拉伸強度可以通過試件的橫截面積出試件

12、承受的最大載荷得到,這是在拉伸試驗中,應力沿Y軸,應邊沿X軸變化的曲線。一種材料加載時開始發(fā)生變化的初值取決于負載的大小。當負載去掉時可以看到變形消失。對于很多材料而言,在達到彈性極限的一定應力值A之前,一直表現為這樣。在應力--應變圖中,這是可以用線性關系來描述的。這之后又一個小的偏移。</p><p>  在彈性范圍內,達到應力的極限之前,應力和應變是成比例的,這被稱為比例極限Ap。在這個區(qū)域,零件符合胡克定

13、律,即應力與應變是成比例的,在彈性范圍內(材料能完全恢復到最初的尺寸,當負載去掉時)。曲線中的實際點,比例極限在彈性極限處。這可以認為是材料恢復初值時落后于前者。這種影響在不含鐵的材料中經常提到。</p><p>  鐵和鎳有明顯的彈性范圍,而銅、鋅、錫等,即使在相對低的應力下也表現為不完全彈性。實際上,能否清楚地分辯彈性極限和比例極限取決于測量設備的靈敏度。</p><p>  當負載超

14、過彈性極限時,塑性變形開始,逐漸的試件被硬化。變形比負載增加得更快時的點被稱成為屈服點Q。金屬開始抵抗負載轉變成快速變形,這時的屈服力成為屈服極限Ay。</p><p>  試件的延伸率 繼續(xù)由Q到T再到,在這種塑性流動時,應力—應變關系在曲線上處于QRST區(qū)域。在點,試件破壞且這種負載稱為破壞負載。最大負載S除以試件初始的截面積,被定義為這種金屬的最終拉伸極限或試樣的拉伸強度Au。</p><

15、;p>  按邏輯說,在應力不增加的情況下,一旦超出彈性極限,金屬開始屈服,并最終破壞。但是當超出彈性極限后,在紀錄曲線上應增大。</p><p>  這種變化主要有兩個原因:</p><p><b>  ①材料的應力硬化</b></p><p> ?、谟捎谒苄宰冃味鸬脑嚰M截面積的變小</p><p>  由于

16、加工硬化,金屬塑性變化越大,硬化越嚴重。金屬拉伸越長,他的直徑(橫截面積)越小。直到到達點為止。點之后,減少的速率開始變化,超過了應力增加的速率,應變很大以至于在局部的某些點的面積減少,被稱為頸縮。橫截面積減少得非常快,以至于抗負載的能力下降,即ST階段。破壞發(fā)生在T點。延伸率A和截面積變化率u被描述成材料的延展性和塑性:</p><p>  a=(L0-L)/L0*100%</p><p&g

17、t;  u=(A0-A)/A0*100%</p><p>  在這里,L0和L分別是試件的最初和最終長度,A0和A分別是試件的最初截面積和最終截面積。</p><p><b>  質量保證與控制</b></p><p>  產品質量是生產中最重要的。如果放任質量惡化下去,生產者會很快發(fā)現銷售量銳減,可能從而會導致產業(yè)的失敗。用戶期望他們買的產品

18、質量性能好,而且如果制造商想建立并維持其信譽,必須在產品制造前制造過程中及制造過程后進行質量控制和質量保證。一般來說,質量保證包括所有的活動,其包括質量建立和質量控制。質量保證可以被分為三個主要領域,他們如下所述:</p><p> ?、僦圃熘暗脑牧系臋z查</p><p>  ②在制造加工過程中的質量控制</p><p> ?、壑圃熘蟮馁|量保證</p&g

19、t;<p>  生產制造后的質量控制包括保證書和面對產品用戶的服務。</p><p>  生產制造之前的原材料檢驗</p><p>  質量保證常常在實際生產制造之前就開始了。這些都是生產者在供應原材料、散件或配件的車間里進行檢驗。生產制造公司的原材料檢驗員到供應廠并且檢查原材料及于制造的另配件。原材料檢驗為生產者提供了一次機會,那就是在原料及散件被運到生產車間之前先進行挑選

20、淘汰。原料檢察員的責任是去檢查原料和零件是否達到設計規(guī)格并且淘汰那些未達到特殊指標的原料。原料檢驗有很多于檢查產品相同的檢驗。其如下所述:</p><p><b>  ①目測</b></p><p><b> ?、谝苯饻y試</b></p><p><b>  ③尺寸測試 </b></p>

21、<p><b>  ④損傷檢驗</b></p><p><b> ?、菪阅軝z驗</b></p><p><b>  目測</b></p><p>  目測檢驗一種產品或原料的某些特征,如顏色、紋理、表面光潔度或部件的總體外觀,從而判斷其是否具有明顯的缺損。</p><p

22、><b>  冶金測試</b></p><p>  冶金測試常常是原料間嚴厲的一個很重要的部分,尤其是像棒料、建筑材料毛坯一些原材料。金屬測試包含所有主要的檢驗類型,其中有目測,化學檢驗,光譜檢驗和機械性能檢驗,其包括硬度、伸縮性能、剪切性能、壓縮性能和合成成分的光譜分析。冶金測試既可用于成品件也可用于預制件。</p><p><b>  尺寸檢驗&l

23、t;/b></p><p>  質量控制的一些領域是重要的生產件的要求尺寸。尺寸在檢驗過程中,像其在生產過程中一樣重要。如果這些零件是為總成供應的,那尺寸尤其嚴格。一些尺寸在生產車間用標準測量工具進行檢驗,像特種接頭、造型和需求的功能標準度量。符合尺寸規(guī)格對所制造多部件的互換性和對多部件成功組裝成復雜的裝置,如汽車、輪船、飛機和其他多部件產品都地極其重要的。</p><p><

24、b>  損傷檢驗</b></p><p>  在一些情況下,對原材料或零部件采取損傷測試的原始測驗是很必要的。特別是涉及到大批的原材料時。例如,在被運到生產車間作最終機器之前,對鑄件進行X-射線、電磁離子、染色滲透劑技術的探傷是很必要的,又對機器總成的電子或持久運作測試而確定的規(guī)格,是無損測試的又一例證。有時,對材料及零件的測試是很必要的,但由于無損測試的花費和成本及時間不是任何時候都允許的。&

25、lt;/p><p>  例如,有壓力測試決定在設計中其是否安全。損傷測試經常用于設計樣機的測試,而不是原材料或零件的常規(guī)檢驗。一旦設計達到了所希望的材料強度,通常對零件做進一步的損傷測試是不必要的,除非他們確實存在疑點。 </p><p><b>  性能測試</b></p><p>  性能測試在零部件被其他產品被安裝之前,檢查部件的功能,尤其是

26、那些機械構造復雜的部件。例如電子設備零件,飛機和汽車發(fā)動機,泵、閥及其他需要在裝運和最后安裝前進行性能測驗的機械系統(tǒng)。</p><p>  附件2:外文原文(復印件)</p><p>  Design of machine elements</p><p>  The principles of design are, of course, universal. T

27、he same theory or equations may be applied to a very small part, as in an instrument, or, to a larger but similar part used in a piece of heavy equipment. In no ease, however, should mathematical calculations be looked u

28、pon as absolute and final. They are all subject to the accuracy of the various assumptions, which must necessarily be made in engineering work. Sometimes only a portion of the total number of parts in a machine are desig

29、ned on </p><p>  The purpose of the design calculations is, of course, to attempt to predict the stress or deformation in the part in order that it may sagely carry the loads, which will be imposed on it, an

30、d that it may last for the expected life of the machine. All calculations are, of course, dependent on the physical properties of the construction materials as determined by laboratory tests. A rational method of design

31、attempts to take the results of relatively simple and fundamental tests such as tension, c</p><p>  In addition, it has been amply proved that such details as surface condition, fillets, notches, manufacturi

32、ng tolerances, and heat treatment have a market effect on the strength and useful life of a machine part. The design and drafting departments must specify completely all such particulars, must specify completely all such

33、 particulars, and thus exercise the necessary close control over the finished product.</p><p>  As mentioned above, machine design is a vast field of engineering technology. As such, it begins with the conce

34、ption of an idea and follows through the various phases of design analysis, manufacturing, marketing and consumerism. The following is a list of the major areas of consideration in the general field of machine design:<

35、;/p><p> ?、?Initial design conception; </p><p>  ② Strength analysis;</p><p> ?、?Materials selection;</p><p>  ④ Appearance;</p><p> ?、?Manufacturing;</p&g

36、t;<p><b> ?、?Safety;</b></p><p>  ⑦ Environment effects;</p><p> ?、?Reliability and life;</p><p>  Strength is a measure of the ability to resist, without fails,

37、forces which cause stresses and strains. The forces may be;</p><p> ?、?Gradually applied;</p><p>  ② Suddenly applied;</p><p> ?、?Applied under impact;</p><p> ?、?Appli

38、ed with continuous direction reversals;</p><p> ?、?Applied at low or elevated temperatures.</p><p>  If a critical part of a machine fails, the whole machine must be shut down until a repair is

39、made. Thus, when designing a new machine, it is extremely important that critical parts be made strong enough to prevent failure. The designer should determine as precisely as possible the nature, magnitude, direction an

40、d point of application of all forces. Machine design is mot, however, an exact science and it is, therefore, rarely possible to determine exactly all the applied forces. In addition, diff</p><p>  Moreover,

41、it is absolutely essential that a design engineer knows how and why parts fail so that reliable machines which require minimum maintenance can be designed. Sometimes, a failure can be serious, such as when a tire blows o

42、ut on an automobile traveling at high speeds. On the other hand, a failure may be no more than a nuisance. An example is the loosening of the radiator hose in the automobile cooling system. The consequence of this latter

43、 failure is usually the loss of some radiator cool</p><p>  The type of load a part absorbs is just as significant as the magnitude. Generally speaking, dynamic loads with direction reversals cause greater d

44、ifficulties than static loads and, therefore, fatigue strength must be considered. Another concern is whether the material is ductile or brittle. For example, brittle materials are considered to be unacceptable where fat

45、igue is involved.</p><p>  In general, the design engineer must consider all possible modes of failure, which include the following:</p><p><b> ?、?Stress;</b></p><p> ?、?/p>

46、 Deformation;</p><p><b>  ③ Wear;</b></p><p> ?、?Corrosion;</p><p>  ⑤ Vibration;</p><p> ?、?Environmental damage;</p><p> ?、?Loosening of fast

47、ening devices.</p><p>  The part sizes and shapes selected must also take into account many dimensional factors which produce external load effects such as geometric discontinuities, residual stresses due to

48、 forming of desired contours, and the application of interference fit joint.</p><p>  Mechanical properties of materials</p><p>  The material properties can be classified into three major headi

49、ngs: (1) physical, (2) chemical, (3) mechanical</p><p>  Physical properties </p><p>  Density or specific gravity, moisture content, etc., can be classified under this category. </p><

50、;p>  Chemical properties</p><p>  Many chemical properties come under this category. These include acidity or alkalinity, react6ivity and corrosion. The most important of these is corrosion which can be e

51、xplained in layman’s terms as the resistance of the material to decay while in continuous use in a particular atmosphere. </p><p>  Mechanical properties </p><p>  Mechanical properties include

52、in the strength properties like tensile, compression, shear, torsion, impact, fatigue and creep. The tensile strength of a material is obtained by dividing the maximum load, which the specimen bears by the area of cross-

53、section of the specimen.</p><p>  This is a curve plotted between the stress along the This is a curve plotted between the stress along the Y-axis(ordinate) and the strain along the X-axis (abscissa) in a

54、tensile test. A material tends to change or changes its dimensions when it is loaded, depending upon the magnitude of the load. When the load is removed it can be seen that the deformation disappears. For many materials

55、this occurs op to a certain value of the stress called the elastic limit Ap. This is depicted by the straig</p><p>  . Within the elastic range, the limiting value of the stress up to which the stress and st

56、rain are proportional, is called the limit of proportionality Ap. In this region, the metal obeys hookes’s law, which states that the stress is proportional to strain in the elastic range of loading, (the material comple

57、tely regains its original dimensions after the load is removed). In the actual plotting of the curve, the proportionality limit is obtained at a slightly lower value of the load than the </p><p>  elastic li

58、mit. This may be attributed to the time-lagin the regaining of the original dimensions of the material. This effect is very frequently noticed in some non-ferrous metals.</p><p>  Which iron and nickel exhib

59、it clear ranges of elasticity, copper, zinc, tin, are found to be imperfectly elastic even at relatively low values low values of stresses. Actually the elastic limit is distinguishable from the proportionality limit mor

60、e clearly depending upon the sensitivity of the measuring instrument.</p><p>  When the load is increased beyond the elastic limit, plastic deformation starts. Simultaneously the specimen gets work-hardened.

61、 A point is reached when the deformation starts to occur more rapidly than the increasing load. This point is called they yield point Q. the metal which was resisting the load till then, starts to deform somewhat rapidly

62、, i. e., yield. The yield stress is called yield limit Ay.</p><p>  The elongation of the specimen continues from Q to S and then to T. The stress-strain relation in this plastic flow period is indicated

63、by the portion QRST of the curve. At the specimen breaks, and this load is called the breaking load. The value of the maximum load S divided by the original cross-sectional area of the specimen is referred to as the ulti

64、mate tensile strength of the metal or simply the tensile strength Au.</p><p>  Logically speaking, once the elastic limit is exceeded, the metal should start to yield, and finally break, without any increase

65、 in the value of stress. But the curve records an increased stress even after the elastic limit is exceeded. Two reasons can be given for this behavior:</p><p> ?、賂he strain hardening of the material;</p&

66、gt;<p> ?、赥he diminishing cross-sectional area of the specimen, suffered on account of the plastic deformation.</p><p>  The more plastic deformation the metal undergoes, the harder it becomes, due to

67、 work-hardening. The more the metal gets elongated the more its diameter (and hence, cross-sectional area) is decreased. This continues until the point S is reached.</p><p>  After S, the rate at which the r

68、eduction in area takes place, exceeds the rate at which the stress increases. Strain becomes so high that the reduction in area begins to produce a localized effect at some point. This is called necking.</p><p

69、>  Reduction in cross-sectional area takes place very rapidly; so rapidly that the load value actually drops. This is indicated by ST. failure occurs at this point T.</p><p>  Then percentage elongation A

70、 and reduction in reduction in area W indicate the ductility or plasticity of the material:</p><p>  A=(L-L0)/L0*100%</p><p>  W=(A0-A)/A0*100%</p><p>  Where L0 and L are the origi

71、nal and the final length of the specimen; A0 and A are the original and the final cross-section area.</p><p>  Quality assurance and control</p><p>  Product quality is of paramount importance i

72、n manufacturing. If quality is allowed deteriorate, then a manufacturer will soon find sales dropping off followed by a possible business failure. Customers expect quality in the products they buy, and if a manufacturer

73、expects to establish and maintain a name in the business, quality control and assurance functions must be established and maintained before, throughout, and after the production process. Generally speaking, quality assur

74、ance encompasses</p><p> ?、賁ource and receiving inspection before manufacturing;</p><p>  ②In-process quality control during manufacturing;</p><p> ?、跶uality assurance after manufac

75、turing.</p><p>  Quality control after manufacture includes warranties and product service extended to the users of the product.</p><p>  Source and receiving inspection before manufacturing<

76、/p><p>  Quality assurance often begins ling before any actual manufacturing takes place. This may be done through source inspections conducted at the plants that supply materials, discrete parts, or subassembl

77、ies to manufacturer. The manufacturer’s source inspector travels to the supplier factory and inspects raw material or premanufactured parts and assemblies. Source inspections present an opportunity for the manufacturer t

78、o sort out and reject raw materials or parts before they are shipped to the man</p><p>  The responsibility of the source inspector is to check materials and parts against design specifications and to reject

79、 the item if specifications are not met. Source inspections may include many of the same inspections that will be used during production. Included in these are:</p><p> ?、賄isual inspection;</p><p&

80、gt; ?、贛etallurgical testing;</p><p>  ③Dimensional inspection;</p><p> ?、蹹estructive and nondestructive inspection;</p><p> ?、軵erformance inspection.</p><p>  Visual in

81、spections</p><p>  Visual inspections examine a product or material for such specifications as color, texture, surface finish, or overall appearance of an assembly to determine if there are any obvious delet

82、ions of major parts or hardware.</p><p>  Metallurgical testing</p><p>  Metallurgical testing is often an important part of source inspection, especially if the primary raw material for manufac

83、turing is stock metal such as bar stock or structural materials. Metals testing can involve all the major types of inspections including visual, chemical, spectrographic, and mechanical, which include hardness, tensile,

84、shear, compression, and spectr5ographic analysis for alloy content. Metallurgical testing can be either destructive or nondestructive.</p><p>  Dimensional inspection </p><p>  Few areas of qual

85、ity control are as important in manufactured products as dimensional requirements. Dimensions are as important in source inspection as they are in the manufacturing process. This is especially critical if the source supp

86、lies parts for an assembly. Dimensions are inspected at the source factory using standard measuring tools plus special fit, form, and function gages that may required. Meeting dimensional specifications is critical to in

87、terchangeability of manufactured parts and </p><p>  Destructive and nondestructive inspection </p><p>  In some cases it may be necessary for the source inspections to call for destructive

88、or nondestructive tests on raw materials or p0arts and assemblies. This is particularly true when large amounts of stock raw materials are involved. For example it may be necessary to inspect castings for flaws by radiog

89、raphic, magnetic particle, or dye penetrant techniques before they are shipped to the manufacturer for final machining. Specifications calling for burn-in time for electronics or endurance run t</p><p>  It

90、 is sometimes necessary to test material and parts to destruction, but because of the costs and time involved destructive testing is avoided whenever possible. Examples include pressure tests to determine if safety facto

91、rs are adequate in the design. Destructive tests are probably more frequent in the testing of prototype designs than in routine inspection of raw material or parts. Once design specifications are known to be met in regar

92、d to the strength of materials, it is often not necessary </p><p>  Performance inspection </p><p>  Performance inspections involve checking the function of assemblies, especially those of comp

93、lex mechanical systems, prior to installation in other products. Examples include electronic equipment subcomponents, aircraft and auto engines, pumps, valves, and other mechanical systems requiring performance evaluatio

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論