at89c51的介紹外文翻譯1_第1頁
已閱讀1頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  AT89C51的介紹</p><p><b>  描述:</b></p><p>  AT89C51是一個低電壓,高性能CMOS8位單片機帶有4K字節(jié)的可反復擦寫的程序存儲器(PENROM)。和128字節(jié)的存取數據存儲器(RAM),這種器件采用ATMEL公司的高密度、不容易丟失存儲技術生產,并且能夠與MCS-51系列的單片機兼容。片內含有8位中央

2、處理器和閃爍存儲單元,功能強大AT89C51單片機可為您提供許多高性價比的應用場合,可靈活應用于各種控制領域。</p><p><b>  主要性能參數:</b></p><p>  ·與MCS-51產品指令系統(tǒng)完全兼容</p><p>  ·4K字節(jié)可重擦寫Flash閃速存儲器</p><p>  

3、·1000次擦寫周期</p><p>  ·數據保留時間:10年</p><p>  ·全靜態(tài)操作:0Hz—24MHz</p><p>  ·三級加密程序存儲器</p><p>  ·128×8字節(jié)內部RAM</p><p>  ·32個可編程I/O

4、口線</p><p>  ·2個16位定時/計數器</p><p><b>  ·6個中斷源</b></p><p>  ·可編程串行UART通道</p><p>  ·低功耗空閑和掉電模式</p><p>  ·片內振蕩器和時鐘電路</p&

5、gt;<p>  ·全雙工UART串行中斷口線</p><p><b>  ·雙數據寄存器指針</b></p><p><b>  功能特性概述:</b></p><p>  AT89C51提供以下標準功能:4K字節(jié)Flash閃速存儲器,128字節(jié)內部RAM,32個I/O口線,兩個16位定

6、時/計數器,一個5向量兩級中斷結構,一個全雙工串行通信口,片內振蕩器及時鐘電路。同時,AT89C51可降至0Hz的靜態(tài)邏輯操作,并支持兩種軟件可選的節(jié)電工作模式??臻e方式停止CPU的工作,但允許RAM,定時/計數器。串行通信口及中斷系統(tǒng)繼續(xù)工作。掉電方式保存RAM中的內容,但振蕩器停止工作并禁止其它所有部件工作直到下一個硬件復位。</p><p>  AT89C51單片機是一個行業(yè)標準架構,被廣泛接受和應用,并作

7、為一種開發(fā)工具。有許多工業(yè)供應商,他們供應這種控制器或把這種控制器集成到某種類型的系統(tǒng)芯片的結構。醫(yī)學研究理事會和高級微電子研究所都選擇這個設備,但他們論證的是兩種截然不同固化工藝。醫(yī)學研究理事會的實例是使用時間鎖存,需要具體時間以確保單粒子效應減少到最低限度。高級微電子研究所采用超低功耗,以及布局和建筑固化工藝的設計原則來實現(xiàn)其結果。這些是與Aeroflex聯(lián)合技術微電子中心( UTMC )完全不同的方法 ,抗輻射固化的AT89C51

8、的工業(yè)供應商,利用抗輻射固化進程研制自己的AT89C51單片機。</p><p><b>  引腳功能說明:</b></p><p><b>  ·VCC:電源電壓</b></p><p><b>  ·GND:地</b></p><p>  ·P

9、0口:P0口是一組8位漏極開路型雙向I/O口,也即地址/數據總線復用口。作為輸出口用時,每位能吸收電流的方式驅動8個TTL邏輯門電路,對端口寫“1”可作為高阻抗輸入端用。</p><p>  在訪問外部數據存儲器或程序存儲器時,這組口線分時轉換地址(低8位)和數據總線復用,在訪問期間即或內部上拉電阻。</p><p>  在Flash編程時,P0口接收指令字節(jié),而在程序校驗時,輸出指令字節(jié)

10、,校驗時,要求外接上拉電阻。</p><p>  ·P1口:P1是一個帶有內部上拉電阻的8位雙向I/O口,P1的輸出緩沖級可驅動(吸收或輸出電流)4個TTL邏輯門電路。對端口寫“1”,通過內部的上拉電阻把端口拉到高電平,此時可作輸入口。作輸入口使用時,因為內部存在上拉電阻,某個引腳被外部信號拉低時會輸出一個電流(IIL)。</p><p>  Flash編程和程序校驗期間,P1接

11、收低8位地址。</p><p>  ·P2口:P2是一個帶有內部上拉電阻的8位雙向I/O口,P2的輸出緩沖級可驅動(吸收或輸出電流)4個TTL邏輯門電路。對端口寫“1”,通過內部的上拉電阻把端口拉到高電平,此時可作輸入口。作輸入口使用時,因為內部存在上拉電阻,某個引腳被外部信號拉低時會輸出一個電流(IIL)。</p><p>  在訪問外部程序存儲器或16位地址的外部數據存儲器(

12、例如執(zhí)行MOVX@DPTR指令)時,P2口送出高8位地址數據。在訪問8位地址的外部數據存儲器(如執(zhí)行MOVX@RI指令)時,P2口線上的內容在整個訪問期間不改變。</p><p>  Flash編程或檢驗時,P2亦接收高位地址和其它控制信號。</p><p>  ·P3口:P3口是一組帶有內部電阻的8位雙向I/O口,P3口輸出緩沖故可驅動4個TTL電路。當P3口寫入“1”后,它們

13、被內部上拉為高電平,并用作輸入。作為輸入,由于外部下拉為低電平,P3口將輸出電流(ILL)這是由于上拉的緣故。</p><p>  P3口除了作為一般的I/O口外,更重要的用途是它的第二功能,如表1所示:</p><p>  表1 P3口第二功能</p><p>  P3口還接收一些用于閃爍存儲器編程和程序校驗的控制信號。</p><p> 

14、 ·RET:復位輸入。當振蕩器工作時,RET引腳出現(xiàn)兩個機器周期以上高電平將使單片機復位。</p><p>  ·ALE/:當訪問外部程序存儲器或數據存儲器時,ALE(地址鎖存允許)輸出脈沖用于鎖存地址的低8位字節(jié)。對Flash存儲器編程期間,該引腳還用于輸入編程脈沖()。即使不訪問外部存儲器,ALE仍以時鐘振蕩頻率的1/6輸出固定的正脈沖信號,因此它可對外輸出時鐘或用于定時目的。要注意的是:

15、每當訪問外部數據存儲器時將跳過一個ALE脈沖。</p><p>  如有必要,可通過對特殊功能寄存器(SFR)區(qū)中的8EH單元的D0位置位,可禁止ALE操作。該位置位后,只有一條MOVX和MOVC指令ALE才會被激活。此外,該引腳會被微弱拉高,單片機執(zhí)行外部程序時,應設置ALE無效。</p><p>  ·:程序儲存允許()輸出是外部程序存儲器的讀選通信號,當AT89C51由外部

16、程序存儲器取指令(或數據)時,每個機器周期兩次有效,即輸出兩個脈沖。在此期間,當訪問外部數據存儲器,這兩次有效的信號不出現(xiàn)。</p><p>  /VPP:外部訪問允許。欲使CPU僅訪問外部程序存儲器(地址為0000H—FFFFH),端必須保持低電平(接地)。需注意的是:如果加密位LB1被編程,復位時內部會鎖存EA端狀態(tài)。如端為高電平(接VCC端),CPU則執(zhí)行內部程序存儲器中的指令。當保持低電平時,則在此期間外

17、部程序存儲器(0000H-FFFFH),不管是否有內部程序存儲器。</p><p>  Flash存儲器編程時,該引腳加上+12V的編程允許電源VPP,當然這必須是該器件是使用12V編程電壓VPP。</p><p>  XTAL1:振蕩器反相放大器及內部時鐘發(fā)生器的輸入端。</p><p>  XTAL2:振蕩器反相放大器的輸出端。</p><p

18、>  Ready/:字節(jié)編程的進度可通過RDY/輸出信號監(jiān)測,編程期間,ALE變?yōu)楦唠娖健癏”后P3.4(RDY/)端電平被拉低,表示正在編程狀態(tài)(忙狀態(tài))。編程完成后,P3.4變?yōu)楦唠娖奖硎緶蕚渚途w狀態(tài)。</p><p><b>  振蕩器特性:</b></p><p>  XTAL1和XTAL2分別為反向放大器的輸入和輸出。該反向放大器可以配置為片內振蕩器。

19、石晶振蕩和陶瓷振蕩均可采用。如采用外部時鐘源驅動器件,XTAL2應不接。有余輸入至內部時鐘信號要通過一個二分頻觸發(fā)器,因此對外部時鐘信號的脈寬無任何要求,但必須保證脈沖的高低電平要求的寬度。</p><p><b>  時鐘振蕩器:</b></p><p>  AT89C51中有一個用于構成內部振蕩器的高增益反相放大器,引腳XTAL1和XTAL2分別是該放大器的輸入端

20、和輸出端。這個放大器與作為反饋元件的片外石英晶體 或陶瓷諧振器一起構成自激振蕩器。</p><p>  用戶也可以采用外部時鐘。這種情況下,外部時鐘脈沖接到XTAL1端,即內部時鐘發(fā)生器的輸入端,XTAL2則懸空。</p><p>  由于外部時鐘信號是通過一個2分頻觸發(fā)器后作為內部時鐘信號的,所以對外部時鐘信號的占空比沒有特殊要求,但最小高電平持續(xù)時間和最大的低電平持續(xù)時間應符合產品技術

21、條件的要求。</p><p><b>  空閑節(jié)電模式:</b></p><p>  在空閑工作模式狀態(tài),CPU保持睡眠狀態(tài)而所有片內的外設仍保持激活狀態(tài),這種方式由軟件產生。此時,片內RAM和所有特殊功能寄存器的內容保持不變。空閑模式可由任何允許的中斷請求或硬件復位終止。</p><p>  通過硬件復位也可將空閑工作模式終止。需要注意的是:

22、當由硬件復位來終止空閑工作模式時,CPU通常是從激活空閑模式那條指令的下一條指令開始繼續(xù)執(zhí)行程序的,要完成內部復位操作,硬件復位脈沖要保持兩個機器周期有效,在這種情況下,內部禁止CPU訪問片內RAM,而允許訪問其它端口。為了避免可能對端口產生意外寫入,激活空閑模式的那條指令后一條指令不應是一條對端口或外部存儲器的寫入指令。</p><p><b>  掉電模式:</b></p>

23、<p>  在掉電模式下,振蕩器停止工作,進入掉電模式的指令是最后一條被執(zhí)行的指令,片內RAM和特殊功能寄存器的內容在終止掉電模式前被凍結。退出掉電模式的唯一方法是硬件復位,復位后將重新定義全部特殊功能寄存器但不改變RAM中的內容,在VCC恢復到正常工作電平前,復位應無效,且必須保持一定時間以使振蕩器重啟動并穩(wěn)定工作。</p><p>  Flash閃速存儲器的編程:</p><p

24、>  AT89C51單片機內部有4K字節(jié)的Flash PEROM,這個Flash存儲陣列出廠時已處于擦除狀態(tài)(即所有存儲單元的內容均為FFH),用戶隨時可對其進行編程。編程接口可接收高電壓(+12V)或低電壓(VCC)的允許編程信號。低電壓編程模式適合于用戶在線編程系統(tǒng),而高電壓編程模式可與通用EPROM編程器兼容。</p><p>  AT89C51的程序存儲器陣列是采用字節(jié)寫入方式編程的,每次寫入一個字

25、節(jié),要對整個芯片內的PEROM程序存儲器寫入一個非空字節(jié),必須使用片擦除的方式將整個存儲器的內容清除。</p><p><b>  編程方法:</b></p><p>  編程前,須根據表設置好地址、數據及控制信號。AT89C51編程方法如下:</p><p>  1、在地址線上加上要編程單元的地址信號。</p><p>

26、;  2、在數據線上加上要寫入的數據字節(jié)。</p><p>  3、激活相應的控制信號。</p><p>  4、在高電壓編程方式時,將EA/VPP端加上+12V編程電壓。</p><p>  5、每對Flash存儲陣列寫入一個字節(jié)或每寫入一個程序加密位,加上一個ALE/編程脈沖。改變編程單元的地址和寫入的數據,重復1—5步驟,直到全部文件編程結束。每個字節(jié)寫入周期

27、是自身定時的,通常約為1.5ms。</p><p><b>  數據查詢:</b></p><p>  AT89C51單片機用數據查詢方式來檢測一個寫周期是否結束,在一個寫周期中,如需讀取最后寫入的那個字節(jié),則讀出的數據最高位是原來寫入字節(jié)最高位的反碼。寫周期完成后,有效的數據就會出現(xiàn)在所有輸出端上,此時,可進入下一個字節(jié)的寫周期,寫周期開始后,可在任意時刻進行數據查

28、詢。</p><p><b>  程序校驗:</b></p><p>  如果加密位LB1、LB2沒有進行編程,則代碼數據可通過地址和數據線讀回原編寫的數據。加密位不可直接校驗,加密位的校驗可通過對存儲器的校驗和寫入狀態(tài)來驗證。</p><p><b>  芯片擦除:</b></p><p>  整

29、個PEROM陣列和三個鎖定位的電擦除可通過正確的控制信號組合,并保持ALE管腳處于低電平10ms 來完成。在芯片擦操作中,代碼陣列全被寫“1”且在任何非空存儲字節(jié)被重復編程以前,該操作必須被執(zhí)行。 </p><p>  此外,AT89C51設有穩(wěn)態(tài)邏輯,可以在低到零頻率的條件下靜態(tài)邏輯,支持兩種軟件可選的掉電模式。在閑置模式下,CPU停止工作。但RAM,定時器,計數器,串口和中斷系統(tǒng)仍在工作。在掉電模式下,保存R

30、AM的內容并且凍結振蕩器,禁止所用其他芯片功能,直到下一個硬件復位為止。</p><p><b>  讀片內簽名字節(jié):</b></p><p>  讀簽名字節(jié)的過程和單元030H、031H及032H的正常校驗相仿,只需將P3.6和P3.7保持低電平,返回值意義如下:</p><p>  (030H)=1EH聲明產品由ATMEL公司制造</

31、p><p>  (031H)=51H聲明為AT89C51單片機</p><p>  (032H)=FFH聲明為12V編程電壓</p><p>  (032H)=05H聲明為5V編程電壓</p><p><b>  編程接口:</b></p><p>  采用控制信號的正確組合可對Flash閃速存儲陣列

32、中的每一代碼字節(jié)進行寫入和存儲器的整片擦除,寫操作周期是自身定時的,初始化后它將自動定時到操作完成。</p><p>  看門狗(WDT)電路:</p><p>  看門狗(WDT)電路的主要是實現(xiàn)復位功能。當單片機運行出現(xiàn)死循環(huán)時,看門狗(WDT)電路可以起保護功能,實現(xiàn)復位作用。</p><p>  Introduction of AT89C51</p&g

33、t;<p>  Description:</p><p>  The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufacture

34、d using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a

35、conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip</p><p><b>  Features:</b></p><p>  ·Compatible with instruction se

36、t of MCS-51 products</p><p>  ·4K bytes of in-system reprogrammable Flash memory</p><p>  ·Endurance: 1000 write/erase cycles</p><p>  ·Data retention time: 10 years&

37、lt;/p><p>  ·Fully static operation: 0 Hz to 24 MHz</p><p>  ·Three-level program memory lock</p><p>  ·128×8-bit internal RAM</p><p>  ·32 progra

38、mmable I/O lines</p><p>  ·Two 16-bit Timer/Counters</p><p>  ·Six interrupt source</p><p>  ·Programmable serial channel</p><p>  ·Low-power idle a

39、nd Power-down modes</p><p>  ·On-chip oscillator and clock circuitry</p><p>  ·Full-duplex UART serial port interrupt line</p><p>  ·Dual Data Pointer Register</p&

40、gt;<p>  Function Characteristic Description:</p><p>  The AT89C51 provides the following standard features: 4K bytes of Flash memory, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a fiv

41、e vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two s

42、oftware selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt </p><p>  The 8051 microcontroller is an industry standard architecture

43、that has broad acceptance, wide-ranging applications and development tools available. There are numerous commercial vendors that supply this controller or have it integrated into some type of system-on-a-chip structure.

44、Both MRC and IAμE chose this device to demonstrate two distinctly different technologies for hardening. The MRC example of this is to use temporal latches that require specific timing to ensure that single event effect&l

45、t;/p><p>  Pin Description:</p><p>  ·VCC: Supply voltage</p><p>  ·GND: Ground</p><p>  ·Port 0: Port 0 is an 8-bit open-drain bi-directional I/O port. As

46、an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high impedance inputs.</p><p>  Port 0 may also be configured to be the multiplexed low order a

47、ddress/bus during accesses to external program and data memory. In this mode P0 has internal pull ups.</p><p>  Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during

48、 program verification. External pull ups are required during program verification.</p><p>  ·Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull ups. The Port 1 output buffers can sink/

49、source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pull ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) be

50、cause of the internal pull ups.</p><p>  Port 1 also receives the low-order address bytes during Flash programming and verification.</p><p>  ·Port 2: Port 2 is an 8-bit bi-directional I/O

51、port with internal pull ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pull ups and can be used as inputs. As inputs, Port 2 pins t

52、hat are externally being pulled low will source current (IIL) because of the internal pull ups.</p><p>  Port 2 emits the high-order address byte during fetches from external program memory and during access

53、es to external data memory which uses 16-bit addresses (MOVX @ DPTR). In this application, it uses strong internal pull ups when emitting 1s. During accesses to external data memory which uses 8-bit addresses (MOVX @ RI)

54、. Port 2 emits the contents of the P2 Special Function Register.</p><p>  Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.</p><p

55、>  ·Port 3: Port 3 is an 8-bit bi-directional I/O port with internal pullups.The Port 3 output buffers can sink/source four TTL inputs. When the P3 I write "1" after, they are internal pull-up is high,

56、and used as input. As input, due to the external pull-down for the low, P3 port output current (ILL) This is due to pull-up's sake.</p><p>  Port 3 also serves the functions of various special features

57、of the AT89C51 as listed below:</p><p>  Port 3 also receives some control signals for Flash programming and verification.</p><p>  ·RST: Reset input. A high on this pin for two machine cyc

58、les while the oscillator is running resets the device.</p><p>  ·ALE/: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the

59、 program pulse input () during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one A

60、LE pulse is skipped during each access to external Data Memory.</p><p>  If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or

61、MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.</p><p>  ·:Program Store Enable is the read st

62、robe to external program memory. When the AT89C51 is executing code from external program memory, is activated twice each machine cycle, except that two activations are skipped during each access to external data memor

63、y.</p><p>  ·/ EA /VPP:External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however,

64、 that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions. When / EA to maintain low, then during this period the external program memory (000

65、0H-FFFFH), regardless of whether an internal program memory.</p><p>  This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP.</p&g

66、t;<p>  ·XTAL1:Input to the inverting oscillator amplifier and input to the internal clock operating circuit.</p><p>  ·XTAL2:Output from the inverting oscillator amplifier.</p><p

67、>  ·Ready/: The progress of byte programming can also be monitored by the RDY/output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming

68、is done to indicate READY.</p><p>  Oscillator Characteristics:</p><p>  XTAL1 and XTAL2 respectively, reverse amplifier input and output. The reverse amplifier can be configured as on-chip osci

69、llator. Shi Jing oscillation and ceramic oscillation can be used. If using an external clock source drive the device, XTAL2 should not take. More than input to the internal clock signal through a two-way flip-flop, so th

70、e external clock signal pulse width without any request, but must ensure that the high-low pulse width requirements.</p><p>  Clock Oscillator:</p><p>  XTAL1 and XTAL2 are the input and output,

71、 respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator. Either a quartz crystal or ceramic resonator may be used.</p><p>  To drive the device from an external cloc

72、k source, XTAL2 should be left unconnected while XTAL1 is driven.</p><p>  There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is thro

73、ugh a divide by two flip trigger, but minimum and maximum voltage high and low time specifications must be observed.</p><p>  Idle Mode:</p><p>  In idle mode, the CPU puts itself to sleep while

74、 all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by an

75、y enabled interrupt or by a hardware reset.</p><p>  It should be noted that when idle is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two mach

76、ine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected wr

77、ite to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that</p><p>  Power-down Mode:</p><p>  In the power-down mode, the osci

78、llator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and special function registers retain their values until the power-down mode is terminated. The only exit f

79、rom power-down is a hardware reset. Reset redefines the special function registers but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be h

80、eld active long enough to al</p><p>  Programming the Flash:</p><p>  The AT89C51 is normally shipped with the on-chip Flash memory array in the erased state (that is, contents = FFH) and ready

81、to be programmed. The programming interface accepts either a high-voltage (12-volt) or a low-voltage (VCC) program enable signal. The low-voltage programming mode provides a convenient way to program the AT89C51 inside t

82、he user’s system, while the high-voltage programming mode is compatible with conventional third party Flash or EPROM programmers.The AT89C51 is shipped with</p><p>  The AT89C51 code memory array is programm

83、ed byte-by-byte in either programming mode. To program any nonblank byte in the on-chip Flash memory, the entire memory must be erased using the chip erase mode.</p><p>  Programming Algorithm:</p>&l

84、t;p>  Before programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table .To program the AT89C51, take the following steps:</p><p>  1. In

85、put the desired memory location on the address lines.</p><p>  2. Input the appropriate data byte on the data lines.</p><p>  3. Activate the correct combination of control signals.</p>&

86、lt;p>  4. Raise EA/VPP to 12V for the high-voltage programming mode.</p><p>  5. Pulse ALE/once to program a byte in the Flash array or the lock bits. </p><p>  The byte-write cycle is self-t

87、imed and typically takes no more than 1.5ms. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.</p><p>  Data Polling:</p><

88、;p>  The AT89C51 features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write

89、cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data polling may begin any time after a write cycle has been initiated.</p><p>  Program Verify:</p><p&g

90、t;  If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits i

91、s achieved by observing that their features are enabled.</p><p>  Chip Erase:</p><p>  The whole array and three lock-bit PEROM electrical erase control signals through the right combination and

92、 maintain ALE pin is low 10ms to complete. Cleaning operation in the chip, code arrays were all written "1" and in any non-empty memory byte has been programmed to repeat the past, the operation must be execute

93、d. In addition, AT89C51 with steady-state logic, and can be in the low to zero frequency under the conditions of static logic, and supports two software selectable power-down mode. In</p><p>  Reading the Si

94、gnature Bytes:</p><p>  The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values retu

95、rned are as follows:</p><p>  (030H) = 1EH indicates manufactured by ATMEL</p><p>  (031H) = 51H indicates AT89C51 single-chip</p><p>  (032H) = FFH indicates 12V programming</p&

96、gt;<p>  (032H) = 05H indicates 5V programming</p><p>  Programming Interface:</p><p>  Every code byte in the Flash array can be written and the entire array can be erased by using the a

97、ppropriate combination of control signals. The write operation cycle is self timed and once initiated, will automatically time itself to completion.</p><p>  Watchdog (WDT) circuit:</p><p>  Wat

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論