版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、<p><b> 英文資料</b></p><p> Suspension </p><p> Suspension is the term given to the system of springs, shock absorbers and linkages that connects a vehicle to its wheels. Suspen
2、sion systems serve a dual purpose – contributing to the car's roadholding/handling and braking for good active safety and driving pleasure, and keeping vehicle occupants comfortable and reasonably well isolated from
3、road noise, bumps, and vibrations,etc. These goals are generally at odds, so the tuning of suspensions involves finding the right compromise. It is importa</p><p> Leaf springs have been around since the ea
4、rly Egyptians.</p><p> Ancient military engineers used leaf springs in the form of bows to power their siege engines, with little success at first. The use of leaf springs in catapults was later refined and
5、 made to work years later. Springs were not only made of metal, a sturdy tree branch could be used as a spring, such as with a bow.</p><p> Horse drawn vehicles</p><p> By the early 19th centu
6、ry most British horse carriages were equipped with springs; wooden springs in the case of light one-horse vehicles to avoid taxation, and steel springs in larger vehicles. These were made of low-carbon steel and usually
7、took the form of multiple layer leaf springs.[1]</p><p> The British steel springs were not well suited for use on America's rough roads of the time, and could even cause coaches to collapse if cornered
8、 too fast. In the 1820s, the Abbot Downing Company of Concord, New Hampshire developed a system whereby the bodies of stagecoaches were supported on leather straps called "thoroughbraces", which gave a swinging
9、 motion instead of the jolting up and down of a spring suspension (the stagecoach itself was sometimes called a "thoroughbrace")</p><p> Automobiles</p><p> Automobiles were initiall
10、y developed as self-propelled versions of horse drawn vehicles. However, horse drawn vehicles had been designed for relatively slow speeds and their suspension was not well suited to the higher speeds permitted by the in
11、ternal combustion engine.</p><p> In 1903 Mors of Germany first fitted an automobile with shock absorbers. In 1920 Leyland used torsion bars in a suspension system. In 1922 independent front suspension was
12、pioneered on the Lancia Lambda and became more common in mass market cars from 1932.[2]</p><p> Important properties</p><p> Spring rate</p><p> The spring rate (or suspension ra
13、te) is a component in setting the vehicle's ride height or its location in the suspension stroke. Vehicles which carry heavy loads will often have heavier springs to compensate for the additional weight that would ot
14、herwise collapse a vehicle to the bottom of its travel (stroke). Heavier springs are also used in performance applications where the loading conditions experienced are more extreme.</p><p> Springs that are
15、 too hard or too soft cause the suspension to become ineffective because they fail to properly isolate the vehicle from the road. Vehicles that commonly experience suspension loads heavier than normal have heavy or hard
16、springs with a spring rate close to the upper limit for that vehicle's weight. This allows the vehicle to perform properly under a heavy load when control is limited by the inertia of the load. Riding in an empty tru
17、ck used for carrying loads can be uncomfortable </p><p> Mathematics of the spring rate</p><p> Spring rate is a ratio used to measure how resistant a spring is to being compressed or expanded
18、 during the spring's deflection. The magnitude of the spring force increases as deflection increases according to Hooke's Law. Briefly, this can be stated as</p><p><b> where</b></p&g
19、t;<p> F is the force the spring exerts </p><p> k is the spring rate of the spring. </p><p> x is the displacement from equilibrium length i.e. the length at which the spring is neith
20、er compressed or stretched. </p><p> Spring rate is confined to a narrow interval by the weight of the vehicle,load the vehicle will carry, and to a lesser extent by suspension geometry and performance desi
21、res.</p><p> Spring rates typically have units of N/mm (or lbf/in). An example of a linear spring rate is 500 lbf/in. For every inch the spring is compressed, it exerts 500 lbf. A non-linear sprin
22、g rate is one for which the relation between the spring's compression and the force exerted cannot be fitted adequately to a linear model. For example, the first inch exerts 500 lbf force, the second inch exerts
23、 an additional 550 lbf (for a total of 1050 lbf), the third inch exerts another 600 lbf (for a total of 16</p><p> The spring rate of a coil spring may be calculated by a simple algebraic equ
24、ation or it may be measured in a spring testing machine. The spring constant k can be calculated as follows:</p><p> where d is the wire diameter, G is the spring's shear modulus (e.g., about 12,000,000
25、 lbf/in² or 80 GPa for steel), and N is the number of wraps and D is the diameter of the coil.</p><p> Wheel rate</p><p> Wheel rate is the effective spring rate when measured at the whee
26、l. This is as opposed to simply measuring the spring rate alone.</p><p> Wheel rate is usually equal to or considerably less than the spring rate. Commonly, springs are mounted on control arms, swing arms o
27、r some other pivoting suspension member. Consider the example above where the spring rate was calculated to be 500 lbs/inch, if you were to move the wheel 1 inch (without moving the car), the spring more than l
28、ikely compresses a smaller amount. Lets assume the spring moved 0.75 inches, the lever arm ratio would be 0.75 to 1. The wheel rate is calculated by taking t</p><p> Wheel rate on independent suspensio
29、n is fairly straight-forward. However, special consideration must be taken with some non-independent suspension designs. Take the case of the straight axle. When viewed from the front or rear, the wheel rate can be measu
30、red by the means above. Yet because the wheels are not independent, when viewed from the side under acceleration or braking the pivot point is at infinity (because both wheels have moved) and the spring is directly inlin
31、e with the wheel contact </p><p> Roll couple percentage</p><p> Roll couple percentage is the effective wheel rates, in roll, of each axle of the vehicle just as a ratio of the vehicle's
32、total roll rate. Roll Couple Percentage is critical in accurately balancing the handling of a vehicle. It is commonly adjusted through the use of anti-roll bars, but can also be changed through the use of different sprin
33、gs.</p><p> A vehicle with a roll couple percentage of 70% will transfer 70% of its sprung weight transfer at the front of the vehicle during cornering. This is also commonly known as "Total Lateral Lo
34、ad Transfer Distribution" or "TLLTD".</p><p> Weight transfer</p><p> Weight transfer during cornering, acceleration or braking is usually calculated per individual wheel and co
35、mpared with the static weights for the same wheels.</p><p> The total amount of weight transfer is only affected by 4 factors: the distance between wheel centers (wheelbase in the case of braking, or track
36、width in the case of cornering) the height of the center of gravity, the mass of the vehicle, and the amount of acceleration experienced.</p><p> The speed at which weight transfer occurs as well as through
37、 which components it transfers is complex and is determined by many factors including but not limited to roll center height, spring and damper rates, anti-roll bar stiffness and the kinematic design of the suspension lin
38、ks.</p><p> Unsprung weight transfer</p><p> Unsprung weight transfer is calculated based on the weight of the vehicle's components that are not supported by the springs. This includes tir
39、es, wheels, brakes, spindles, half the control arm's weight and other components. These components are then (for calculation purposes) assumed to be connected to a vehicle with zero sprung weight. They are then put t
40、hrough the same dynamic loads. The weight transfer for cornering in the front would be equal to the total unsprung front weight times the G-F</p><p> Suspension type</p><p> Dependent suspensi
41、ons include:</p><p> Satchell link </p><p> Panhard rod </p><p> Watt's linkage </p><p><b> WOBLink </b></p><p> Mumford linkage </
42、p><p><b> Live axle</b></p><p> Twist beam</p><p><b> Beam axle</b></p><p> leaf springs used for location (transverse or longitudinal) </p&
43、gt;<p> The variety of independent systems is greater and includes:</p><p> Swing axle </p><p> Sliding pillar </p><p> MacPherson strut/Chapman strut </p><p&g
44、t; Upper and lower A-arm (double wishbone) </p><p> multi-link suspension </p><p> semi-trailing arm suspension </p><p> swinging arm </p><p> leaf springs </p&
45、gt;<p> Armoured fighting vehicle suspension</p><p> Military AFVs, including tanks, have specialized suspension requirements. They can weigh more than seventy tons and are required to move at high
46、speed over very rough ground. Their suspension components must be protected from land mines and antitank weapons. Tracked AFVs can have as many as nine road wheels on each side. Many wheeled AFVs have six or eight wheels
47、, to help them ride over rough and soft ground.</p><p> The earliest tanks of the Great War had fixed suspensions—with no movement whatsoever. This unsatisfactory situation was improved with leaf spring sus
48、pensions adopted from agricultural machinery, but even these had very limited travel.</p><p> Speeds increased due to more powerful engines, and the quality of ride had to be improved. In the 1930s, the Chr
49、istie suspension was developed, which allowed the use of coil springs inside a vehicle's armoured hull, by redirecting the direction of travel using a bell crank. Horstmann suspension was a variation which used a com
50、bination of bell crank and exterior coil springs, in use from the 1930s to the 1990s.</p><p> By the Second World War the other common type was torsion-bar suspension, getting spring force from twisting bar
51、s inside the hull—this had less travel than the Christie type, but was significantly more compact, allowing the installation of larger turret rings and heavier main armament. The torsion-bar suspension, sometimes includi
52、ng shock absorbers, has been the dominant heavy armored vehicle suspension since the Second World War.</p><p><b> 中文翻譯</b></p><p><b> 懸吊系統(tǒng)</b></p><p> (亦稱
53、懸掛系統(tǒng)或懸載系統(tǒng))是描述一種由彈簧、減震筒和連桿所構(gòu)成的車用系統(tǒng),用于連接車輛與其車輪。懸吊系統(tǒng)扮演雙重的角色-讓車輛的操控和煞車合乎良好的動態(tài)安全與操駕樂趣,并保持車主的舒適性及隔絕適當?shù)穆访嬖胍?、彈跳與震動。這些特性通常都是互相牽制的,因此懸吊的調(diào)整就必須找到兩者兼顧的位置。懸吊系統(tǒng)同時也保護車輛本身、或車上的貨物行李等,避免這些東西損壞或磨耗。一臺車輛的前輪與后輪懸吊設計有可能會大不相同。</p><p>
54、; 在古早的埃及,就已經(jīng)出現(xiàn)過板式彈簧的蹤跡。</p><p> 古代的兵工學家使用板式彈簧,以彎曲的方式來加強他們的攻城武器,起初的效果還不錯。后來在投石器上所使用的板式彈簧更為精密,而且可以使用好幾年。彈簧不一定由金屬制造,也可使用堅硬的樹枝當作彈簧,就像制弓一樣。</p><p><b> 馬車</b></p><p> 在19世
55、紀早期,大部分的英國四輪馬車都有配備彈簧;木制彈簧用于輕型單馬車輛來避稅,而較大的馬車彈簧則采用鐵制。這些鐵制的彈簧由低碳鋼制成而且通常迭成多層成為板式彈簧。[1]</p><p> 英國的鐵制彈簧不適用于當時美國大陸上粗糙不平的路面,轉(zhuǎn)彎過快甚至會導致馬車解體。在 1820 年代,新罕布什爾州康科德市的Abbot Downing 公司開發(fā)出一種系統(tǒng),藉此讓驛馬車的車體能夠支撐在稱作「thoroughbrace
56、s」的皮帶上,這樣車廂的動態(tài)可改善成擺蕩的動作,而不是像彈簧懸吊那樣劇烈的上下震動。(有時驛馬車本身也被稱作「thoroughbrace」。)</p><p><b> 汽車</b></p><p> 汽車在早期開發(fā)時,視為自身動力推進的馬車。但是相對來講,馬車是設計用來低速行駛的,因此它們的懸吊并不適用于內(nèi)燃機引擎所能產(chǎn)生的高速行駛。</p>&l
57、t;p> 1903年,德國的Mors汽車公司首次將車輛安裝了減震筒。1920年,Leyland汽車公司在懸吊系統(tǒng)中加入了扭桿裝置。1922年,Lancia Lambda開創(chuàng)先例地使用獨立前輪懸吊,在1932年以后的市售車輛上更為常見。[2]</p><p><b> 重要屬性</b></p><p><b> 彈簧剛性</b><
58、/p><p> 彈簧剛性(或稱懸吊剛性)是懸吊伸縮時,用來設定車高或其定位的要素之一。車輛載重大的通常會搭配更硬的懸吊來抵銷額外的重量負載,否則可能在途中(或彈跳時)壓毀了車輛。較硬的彈簧通常也用于性能用途,因為這時候懸吊在彈跳時是經(jīng)常性下壓的,這時會導致可用的彈跳伸縮量變少,造成破壞性的下壓力。</p><p> 彈簧太硬或太軟都會造成車輛失去懸吊性能。一般來說,比較經(jīng)常性載重的車輛具備
59、較重或較硬的彈簧,其彈簧剛性接近車重的上限值。這樣讓車輛可以在控制性受載重慣性的限制下,正常地載貨并操駕行駛。駕駛一臺空的載貨用卡車可能會對乘客感到較不舒適,是因為與車重相關的高彈簧剛性。賽車可以說是具備較硬的彈簧,而且會呈現(xiàn)不舒適的顛簸。然而,雖然我們說它們兩者均具備硬彈簧,但實際上一臺2000磅的賽車與一臺10000磅的卡車,其兩者的彈簧剛性則是全然不同的。高級房車、的士或客運巴士通常可以說是具備較軟的彈簧。車輛的彈簧若是老化或損壞
60、,行駛時容易貼近地面,懸吊的總壓縮量會降低,車體也容易側(cè)傾。性能跑車的彈簧剛性有時不只是為了車重或載重的需求。</p><p><b> 彈簧剛性的數(shù)學應用</b></p><p> 彈簧剛性是一個比值,用來測量一個彈簧在偏斜時被壓縮或伸展時的阻抗。按照虎克定律,彈力強度隨著偏斜增加而增加。簡單來講,這個現(xiàn)象可以由下列公式所述:</p><p&
61、gt;<b> 其中</b></p><p><b> F 為彈簧的施力 </b></p><p><b> k 為彈簧的剛性 </b></p><p> x 為靜力平衡時的位移量,其長度為彈簧壓縮或延展時。 </p><p> 由于本身車重、車輛載重、懸吊系統(tǒng)的空間
62、限制或性能需求等因素下,彈簧剛性會受限在一段狹小的分布區(qū)段。</p><p> 彈簧剛性的單位通常由N/mm表示(或lbf/in)。例如一個線性的彈簧剛性表示為 500 lbf/in,其代表彈簧每壓縮一英吋,它可以施壓 500 磅力。而一個具有非線性的彈簧剛性,代表它的壓縮力與施力的關系無法適當?shù)貙谝粋€線性模型。例如,第一英吋會施壓 500 磅力,第二英吋會施壓額外的 550 磅力(因此總共是 1050 磅
63、力),第三英吋則會施壓另外 600 磅力(總共達 1650 磅力)。相較之下,一個 500 lbf/in 的線性彈簧壓縮了三英吋之后的施壓力則只有 1500 磅力。</p><p> 線圈彈簧的彈簧剛性可由簡單的代數(shù)方程來計算求得,或是由彈簧測試機來測量。彈簧常數(shù)k可由下列公式計算:</p><p> 其中d為線材直徑,E為彈簧的彈性系數(shù)(例如鋼鐵的系數(shù)大約為 30,000,000 l
64、bf/in² 或是 207 GPa),N為線圈的纏繞次數(shù),而D為線圈直徑。</p><p><b> 懸架剛性</b></p><p> 懸架剛性為針對車輛輪架所測量出有效的彈簧剛性,但不只是單獨對彈簧剛性做測量而已。</p><p> 懸架剛性通常等于或小于彈簧剛性。一般來說,彈簧會固定在控制臂、搖臂或某些其他種類的樞軸支承機
65、構(gòu)上。假設前述例子中的彈簧剛性計算出為每吋 500 磅力,如果你將車輪垂直移動一英吋(車輛是靜止的),則彈簧可能僅壓縮了一小部份的量。假設彈簧只移動了 0.75 英吋,杠桿臂比率可能為 0.75 到 1 ,則懸架剛性可由彈簧剛性比值的平方倍(0.5625)而求得。將比值做平方倍的目的在于它對于懸架剛性有兩個作用存在,這個比值同時影響了施力大小與位移量。[3]</p><p> 獨立懸吊系統(tǒng)下的懸架剛性就非常簡單
66、明了,但對于某些非獨立懸吊系統(tǒng)的設計就必須考慮到一些特殊狀況。以車軸的縱向角度來看,若由前方或后方來看,懸架剛性可以由前述的方式去測量得出。然而由于輪架并非獨立的,在加速或減速時側(cè)向來看,支點會位在無限遠的位置(因為前后輪都移動了)。過彎與加減速時的有效懸架剛性也往往有不一樣的結(jié)果,將彈簧的定位盡可能地靠近車輪可以將懸架剛性的差異降到最小。</p><p><b> 側(cè)傾力耦百分比</b>
67、</p><p> 在車輛搖晃時,側(cè)傾力耦百分比為車身各軸在線發(fā)生的有效懸架剛性數(shù)值,為車輛總側(cè)傾率的某個比值。側(cè)傾力耦百分比在精確平衡車輛的操控上是非常關鍵的因素。</p><p> 一臺側(cè)傾力耦百分比 70% 的車輛,在過彎時會將本身 70% 的懸吊載重轉(zhuǎn)移到車輛前方。</p><p><b> 重量轉(zhuǎn)移</b></p>
68、<p> 重量轉(zhuǎn)移通常針對單一車輪在過彎、加速或煞車等狀況下,相較于該輪凈重時的情形。過彎的輪載重必須先得知靜止時的輪載重,并依照每個輪架的簧上載重、簧下總重,或是頂舉力的大小來增減。有些賽車業(yè)界會使用一些假名詞,或是將頂舉力和懸吊載重轉(zhuǎn)移等因素統(tǒng)一用一個詞組名詞來稱呼,例如「side bite」。通常會這樣做的理由在于,他們可能沒必要知道這么詳細,或是刻意混淆對手而不讓對方得知車輛的性能,因此使用一般人容易接受的「擬人」
69、詞匯。</p><p><b> 非承載重量轉(zhuǎn)移</b></p><p> 非承載重量轉(zhuǎn)移是由非懸吊支撐的車輛組件重量所計算求得,這些組件包含了輪胎、輪圈、煞車、輪軸、控制臂一半的重量,以及其他的組件。這些連接于車身的組件會假設成無重量(便于計算用途),然后放在同樣的動態(tài)負載。過彎時,前輪的重量轉(zhuǎn)移會等于:前輪非承載總重×重力×前輪非承載重心高
70、度÷前輪車軸寬度。此算法同樣適用于后輪。</p><p><b> 懸吊系統(tǒng)類型</b></p><p> 獨立懸吊系統(tǒng)(亦稱獨立懸掛系統(tǒng))包含了以下幾種懸掛系統(tǒng):Swing axle 搖軸式、 Sliding pillar 滑動支柱式、 MacPherson strut/Chapman strut 麥佛遜(麥花臣)支柱懸掛/查普曼支柱式懸吊(麥佛遜支柱
71、懸吊系統(tǒng)由美國福特公司發(fā)明,避震性良好占空間小,查普曼支柱式懸吊由英國蓮花汽車創(chuàng)辦人查普曼改良麥佛遜支柱所發(fā)明,多用在后懸吊系統(tǒng))、 Upper and lower A-arm 雙A臂式(或稱double wishbone、雙A型控制臂、不等長控制臂,基本設計已兼具車輛行駛時的縱向與橫向控制,跑車常用) 、 multi-link suspension 多連桿式、 semi-trailing arm suspension 半拖曳臂式、 s
72、winging arm 搖臂式、leaf springs 葉片彈簧式。</p><p> 非獨立式懸吊系統(tǒng)包含Satchell link、 Panhard rod、 Watt's linkage(澳洲福特汽車所發(fā)明,可改善活軸或固定軸懸吊的操控性)、 WOBLink、 Mumford linkage、 Live axle(活軸懸吊,有傳動功能的Beam axle)、 Twist beam(亦稱Torsi
73、on beam axle扭力梁式懸吊,搭配拖曳臂,可算半獨立式懸吊系統(tǒng),中小型車后懸吊常使用)、 Beam axle(無傳動功能稱Solid axle,有傳動功能稱Live axle,通稱Beam axle)、 leaf springs used for location (transverse or longitudinal) 。</p><p><b> 裝甲戰(zhàn)車懸吊系統(tǒng)</b><
74、;/p><p> 早期戰(zhàn)車底盤為固定懸吊,震動大機動性差,后來采用農(nóng)耕機葉片彈簧懸吊,但改善有限。 二十世紀30年代美國人John Walter Christie 發(fā)明坦克用全輪獨立懸掛系統(tǒng),但與美國軍方因規(guī)格問題未達成協(xié)議,共產(chǎn)蘇聯(lián)發(fā)現(xiàn)美軍未采用此技術后,迅速買去這技術專利,讓蘇聯(lián)發(fā)展出行駛惡劣路面如履平地的優(yōu)秀T34坦克,越野機動能力遠勝納粹坦克,成為擊敗納粹主力軍隊改寫歷史的發(fā)明。英國另有一種Horstman
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車專業(yè) 機械 畢業(yè)設計翻譯外文翻譯
- 汽車專業(yè)畢業(yè)設計外文翻譯6
- 汽車專業(yè)畢業(yè)設計外文翻譯--汽車的轉(zhuǎn)向控制
- 汽車專業(yè)畢業(yè)設計外文翻譯---汽車的基本機械機構(gòu)
- 汽車專業(yè)畢業(yè)設計文獻翻譯
- 動畫專業(yè)畢業(yè)設計外文翻譯
- 水泥專業(yè)畢業(yè)設計---外文翻譯
- 土木專業(yè)畢業(yè)設計外文翻譯
- 供熱專業(yè)畢業(yè)設計外文翻譯
- 機械專業(yè)畢業(yè)設計外文翻譯
- 網(wǎng)頁設計專業(yè)畢業(yè)設計外文翻譯
- 機械數(shù)控專業(yè)畢業(yè)設計外文翻譯
- 建筑專業(yè)畢業(yè)設計外文翻譯3
- 電氣專業(yè)畢業(yè)設計外文翻譯
- 采礦專業(yè)畢業(yè)設計(含外文翻譯)
- 通信專業(yè)畢業(yè)設計外文翻譯 (2)
- 畢業(yè)設計---汽車造型設計(含外文翻譯)
- 汽車專業(yè)畢業(yè)設計外文翻譯----駕駛者的轉(zhuǎn)向感
- 橋梁專業(yè)畢業(yè)設計(含外文翻譯)
- 機械專業(yè)畢業(yè)設計外文翻譯1
評論
0/150
提交評論