版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> Literature translation.</p><p> Construction constituent</p><p> Materials and structural forms are combined to make up the various parts of a building, including the load-carrying
2、frame, skin, floors, and partitions. The building also has mechanical and electrical systems, such as elevators, heating and cooling systems, and lighting systems. The superstructure is that part of a building above gro
3、und, and the substructure and foundation is that part of a building below ground.</p><p> The skyscraper owes its existence to two developments of the 19th century: steel skeleton construction and the passe
4、nger elevator. Steel as a construction material dates from the introduction of the Bessemer converter in 1885.Gustave Eiffel (1832-1932) introduced steel construction in France. His designs for the Galerie des Machines
5、and the Tower for the Paris Exposition of 1889 expressed the lightness of the steel framework. The Eiffel Tower, 984 feet (300 meters) high, was the tallest struct</p><p> Elisha Otis installed the first e
6、levator in a department store in New York in 1857.In 1889, Eiffel installed the first elevators on a grand scale in the Eiffel Tower, whose hydraulic elevators could transport 2,350 passengers to the summit every hour.&l
7、t;/p><p> Load-Carrying Frame</p><p> Until the late 19th century, the exterior walls of a building were used as bearing walls to support the floors. This construction is essentially a post an
8、d lintel type, and it is still used in frame construction for houses. Bearing-wall construction limited the height of building because of the enormous wall thickness required;for instance, the 16-story Monadnock Bui
9、lding built in the 1880’s in Chicago had walls 5 feet (1.5 meters) thick at the lower floors. In 1883, William Le Baron Jen</p><p> All tall buildings were built with a skeleton of steel until World War Ⅱ.
10、After the war, the shortage of steel and the improved quality of concrete led to tall building being built of reinforced concrete. Marina Tower (1962) in Chicago is the tallest concrete building in the United States; its
11、 height—588 feet (179 meters)—is exceeded by the 650-foot (198-meter) Post Office Tower in London and by other towers.</p><p> A change in attitude about skyscraper construction has brought a return to the
12、use of the bearing wall. In New York City, the Columbia Broadcasting System Building, designed by Eero Saarinen in 1962,has a perimeter wall consisting of 5-foot (1.5meter) wide concrete columns spaced 10 feet (3 meters)
13、 from column center to center. This perimeter wall, in effect, constitutes a bearing wall. One reason for this trend is that stiffness against the action of wind can be economically obtained by using t</p><p&g
14、t;<b> Floors</b></p><p> The construction of the floors in a building depends on the basic structural frame that is used. In steel skeleton construction, floors are either slabs of concrete res
15、ting on steel beams or a deck consisting of corrugated steel with a concrete topping. In concrete construction, the floors are either slabs of concrete on concrete beams or a series of closely spaced concrete beams (ribs
16、) in two directions topped with a thin concrete slab, giving the appearance of a waffle on its underside. The ki</p><p> Soils and Foundations</p><p> All building are supported on the ground,
17、 and therefore the nature of the soil becomes an extremely important consideration in the design of any building. The design of a foundation depends on many soil factors, such as type of soil, soil stratification, thickn
18、ess of soil lavers and their compaction, and groundwater conditions. Soils rarely have a single composition; they generally are mixtures in layers of varying thickness. For evaluation, soils are graded according to parti
19、cle size, which inc</p><p> Due to both the compaction and flow effects, buildings tend settle. Uneven settlements, exemplified by the leaning towers in Pisa and Bologna, can have damaging effects—the build
20、ing may lean, walls and partitions may crack, windows and doors may become inoperative, and, in the extreme, a building may collapse. Uniform settlements are not so serious, although extreme conditions, such as those in
21、Mexico City, can have serious consequences. Over the past 100 years, a change in the groundwater level</p><p> The great variability of soils has led to a variety of solutions to the foundation problem. Whe
22、re</p><p> firm soil exists close to the surface, the simplest solution is to rest columns on a small slab of concrete(spread footing). Where the soil is softer, it is necessary to spread the column load o
23、ver a greater area;in this case, a continuous slab of concrete(raft or mat) under the whole building is used. In cases where the soil near the surface is unable to support the weight of the building, piles of wood, steel
24、, or concrete are driven down to firm soil.</p><p> The construction of a building proceeds naturally from the foundation up to the superstructure. The design process, however, proceeds from the roof down t
25、o the foundation (in the direction of gravity). In the past, the foundation was not subject to systematic investigation. A scientific approach to the design of foundations has been developed in the 20th century. Karl Te
26、rzaghi of the United States pioneered studies that made it possible to make accurate predictions of the behavior of foundation</p><p> Although there have been many advancements in building construction tec
27、hnology in general, spectacular achievements have been made in the design and construction of ultrahigh-rise buildings.</p><p> The early development of high-rise buildings began with structural steel frami
28、ng. Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes. The high-rise buildings ranging from 50 t
29、o 110 stories that are being built all over the United States are the result of innovations and development of new structural systems.</p><p> Greater height entails increased column and beam sizes to make
30、buildings more rigid so that under wind load they will not sway beyond an acceptable limit. Excessive lateral sway may cause serious recurring damage to partitions, ceilings, and other architectural details. In addition,
31、 excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of the inherent potent<
32、;/p><p> In a steel structure, for example, the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building. Curve A in Fig.1 represents the average uni
33、t weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary
34、 represents the premium for all lateral loads. The gap between the upper boundar</p><p> Tube in tube</p><p> Another system in reinforced concrete for office buildings combines the traditiona
35、l shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (Fig
36、.2), known as the tube-in-tube system, made it possible to design the world’s present tallest (714 ft or 218 m) lightweight concrete building (the 52-story One Shell Plaza Building in Houston) for t</p><p>
37、 Systems combining both concrete and steel have also been developed, an example of which is the composite system developed by Skidmore, Owings & Merrill in which an exterior closely spaced framed tube in concrete env
38、elops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system.</p><p&
39、gt; Keyword: Components of A Building and Tall,Buildings Load-Carrying Frame, Floors Soils and Foundations,Tube in tube. Components of A Building and Tall Buildings</p><p><b> 文獻(xiàn)翻譯</b>&l
40、t;/p><p><b> 建筑的組成部分</b></p><p> 材料和結(jié)構(gòu)類型是構(gòu)成建筑物各方面的組成部分,包括承重結(jié)構(gòu)、圍護(hù)結(jié)構(gòu)、樓地面和隔墻。在建筑物內(nèi)部還有機(jī)械和電氣系統(tǒng),例如電梯、供暖和冷卻系統(tǒng)、照明系統(tǒng)等。高于地面的部分是建筑物的上部結(jié)構(gòu),地面以下部分為建筑物的基礎(chǔ)和地基。</p><p> 摩天大樓的出現(xiàn)應(yīng)歸功于19世紀(jì)的兩
41、個(gè)新發(fā)明:鋼結(jié)構(gòu)建筑和載人電梯。鋼材作為結(jié)構(gòu)材料是從1855年貝色麥煉鋼法被首次介紹后開始應(yīng)用的。古斯塔?艾菲爾(1832~1923)首次介紹鋼結(jié)構(gòu)建筑是在法國(guó)。他的設(shè)計(jì)是為1889年的巴黎國(guó)際博覽會(huì)所設(shè)計(jì)的理想的建筑,表達(dá)了鋼結(jié)構(gòu)的輕巧。艾菲爾鐵塔高300米,是當(dāng)時(shí)人類建造的最高建筑物,直到40年后才由美國(guó)的摩天大樓超過(guò)其高度。</p><p> 第一部電梯是1857年Elisha Otis給紐約的一家百貨公
42、司所安裝的。1889年,艾菲爾在艾菲爾鐵塔上安裝了第一部大型液壓電梯,它每小時(shí)可以運(yùn)送2350位乘客到達(dá)塔頂。</p><p><b> 承重框架</b></p><p> 直到19世紀(jì)后期,建筑物的外墻被用做承重墻來(lái)支撐樓層,這種結(jié)構(gòu)是基本的一種過(guò)梁類型,它還被用在框架結(jié)構(gòu)房屋中。因?yàn)樗鑹w的厚度很大,承重墻結(jié)構(gòu)限制了建筑物的高度;例如,建于1880年的芝加哥
43、16層高的Monadnock Building,在較低的樓層墻體厚度已達(dá)到1.5米。1883年,Willian Le Baron Jenney(1832~1907)用類似鳥籠形狀的鐵柱來(lái)支撐樓層。在1889年,框架結(jié)構(gòu)首次由鋼梁和鋼柱構(gòu)成。外墻成為了“幕墻”而不是被用做支撐結(jié)構(gòu)是框架結(jié)構(gòu)的一個(gè)成果。磚石一直是“幕墻”的主要材料,直到1930年輕金屬和玻璃幕墻的問(wèn)世為止。自從鋼骨架首次推出,建筑物的高度一直在迅速增加。</p>
44、;<p> 直到第二次世界大戰(zhàn)為止,所有的高層建筑都是由鋼骨架建造的。戰(zhàn)爭(zhēng)結(jié)束以后,鋼材的缺乏和混凝土品質(zhì)的改進(jìn),促進(jìn)了鋼筋混凝土高層建筑的發(fā)展。芝加哥的Marina Towers(1962)是美國(guó)最高的混凝土建筑;它的高度是588英尺即179米,不久以后它將超出198米高的倫敦郵政塔和其它的塔。</p><p> 在關(guān)于摩天大樓建筑中的承重墻的使用在看法上有了改變。在紐約,由Eero Saar
45、inen于1962年設(shè)計(jì)的哥倫比亞廣播公司大樓,四周的墻由1.5米寬的混凝土柱構(gòu)成,柱與柱的中心間距為3米。這種圍護(hù)墻有效地構(gòu)成了建筑物的承重墻。這種趨勢(shì)發(fā)展的原因是建筑物的墻像一個(gè)管道可以有利地抵抗風(fēng)的強(qiáng)烈作用;世貿(mào)大樓是另一個(gè)管道法的例子。相比之下,堅(jiān)固的框架或垂直支撐通常提供建筑的橫向穩(wěn)定。</p><p><b> 樓地面 </b></p><p> 一幢
46、建筑的樓地面結(jié)構(gòu)取決于它所使用的基本結(jié)構(gòu)框架。在鋼框架建筑中,樓地面或者是鋼梁上的混凝土樓板,或者是由波紋鋼配有混凝土骨料組成的地板。在混凝土結(jié)構(gòu)中,樓地面或者是混凝土梁上的混凝土樓板或者是一系列緊密分布于混凝土梁在方向上端的薄混凝土樓板,在它的下面抹一層抹面。樓層的種類取決于支撐柱之間的距離或者墻和空間的功能性。在一棟公寓大樓中,例如,墻和柱隔開3.7米到5.5米,最常見的結(jié)構(gòu)是無(wú)梁實(shí)心混凝土樓蓋。樓蓋的下表面是樓蓋以下空間的最高限度
47、。辦公大樓中常使用波紋鋼地板,這是因?yàn)椴y鋼地板的波紋當(dāng)由另一塊金屬板蓋上時(shí),可以形成電話線和電線管道。</p><p><b> 土地和地基 </b></p><p> 所有的建筑物都是靠土層支撐在地面上的,因而土的特性成為建筑設(shè)計(jì)時(shí)極其重要的考慮因素?;A(chǔ)的設(shè)計(jì)取決于土的許多因素,例如土的類型,土分層的情況,土層的厚度和它的密實(shí)度,以及地下水的情況等。土層很少
48、有一個(gè)單一的性質(zhì);他們通常是厚度變化的混合狀態(tài)土層。據(jù)評(píng)定,土層的等級(jí)是根據(jù)土分子的大小來(lái)劃分,從小到大依次是淤泥、粘土、沙、石子、巖石。通常,較大分子的土支撐的荷載要大。最堅(jiān)硬的巖石能夠支撐的荷載大約是每平方米100噸,而最軟的淤泥僅能夠支撐的荷載大約是每平方米0.25噸。所有地表以下的土都處于受壓狀態(tài),說(shuō)得更精確些,這些土承受與作用在其上的土柱重量相等的壓力。許多土顯示出彈性的性質(zhì)——他們或被重載壓壞或卸載后又恢復(fù)。土的彈性常隨時(shí)間
49、而改變,更精確地說(shuō),土層的變形在恒載作用下隨著時(shí)間的增長(zhǎng)而不斷地改變。過(guò)一段時(shí)間后,如果加于土層上的荷載大于土自然壓緊狀態(tài)下的重量,則建筑物不會(huì)產(chǎn)生沉降。建筑物的重量可能會(huì)使土產(chǎn)生流動(dòng);也就是說(shuō),經(jīng)常會(huì)發(fā)生土被擠出。</p><p> 由于土受壓和流動(dòng)的影響,使建筑物發(fā)生沉降。不均勻沉降例如比薩斜塔,損壞的結(jié)果是建筑物發(fā)生傾斜,墻和隔墻可能出現(xiàn)裂縫,窗戶和門可能產(chǎn)生變形,或者甚至建筑可能倒塌。均勻沉降不會(huì)如此嚴(yán)
50、重,盡管可能出現(xiàn)危險(xiǎn)狀況,例如墨西哥城的一些建筑,出現(xiàn)各種各樣的后果,在過(guò)去的一年里,地下水位發(fā)生了改變,致使一些建筑下沉了3米多。因?yàn)轭愃频臓顩r可能發(fā)生在建造時(shí)也可能是建造后,因此小心處理建筑物下的土層是極其重要的。</p><p> 土層巨大的變化使得解決地基問(wèn)題的辦法多樣化。如果表面土層下的土為堅(jiān)硬土層,最簡(jiǎn)單的辦法是采用混凝土基礎(chǔ)。若是軟弱土層,加大柱的面積;假如這樣的話,整個(gè)建筑就可采用筏板基礎(chǔ)。假設(shè)
51、表面土層不能夠支撐建筑物的重量,木結(jié)構(gòu)建筑、鋼結(jié)構(gòu)建筑、或者混凝土建筑應(yīng)建造在堅(jiān)硬土層上。</p><p> 建造一幢建筑物一般是從基礎(chǔ)往上到上部結(jié)構(gòu)。然而設(shè)計(jì)的過(guò)程是從屋頂開始到基礎(chǔ)。在過(guò)去,地基處理不是一個(gè)系統(tǒng)的研究項(xiàng)目。在20世紀(jì),一種科學(xué)的地基設(shè)計(jì)方法已經(jīng)發(fā)展起來(lái)了。美國(guó)的Karl Teraghi不斷創(chuàng)造研究,使土力學(xué)和土地勘測(cè)聯(lián)合起來(lái),讓它盡可能準(zhǔn)確地預(yù)測(cè)地基的活動(dòng)狀態(tài)。過(guò)去典型的地基破壞的例子——比
52、薩斜塔現(xiàn)在變得幾乎不存在了。而地基仍然是建筑物中不可見部分費(fèi)用最大的一部分。</p><p> 盡管大體上在建筑物的建造工藝上取得許多進(jìn)步,但是在超高層建筑物的設(shè)計(jì)和建造上仍取得了驚人的成就。</p><p> 早期的高層建筑的發(fā)展是以型鋼結(jié)構(gòu)開始的。鋼筋混凝土和薄殼筒體體系已成為許多住宅和商業(yè)建筑以節(jié)儉和竟?fàn)帪槟康牡慕Y(jié)構(gòu)。作為新結(jié)構(gòu)體系的創(chuàng)新和發(fā)展的結(jié)果,美國(guó)到處都是50到110層的
53、高層建筑。</p><p> 巨大的高度需要增加柱和梁的尺寸來(lái)使建筑物更加堅(jiān)固,為的是在風(fēng)荷載作用下不致于使其傾斜度超過(guò)限值。反復(fù)地過(guò)多地側(cè)向擺動(dòng)可能引起隔墻天花板和其它建筑部件的損壞。另外,過(guò)度的擺動(dòng)可能會(huì)給建筑物中的居住者帶來(lái)不安和恐懼,因?yàn)闀?huì)使他們有移動(dòng)的感覺。鋼筋混凝土結(jié)構(gòu)體系和鋼結(jié)構(gòu)一樣,內(nèi)在的潛力使得建筑物非常堅(jiān)硬因此不需要附加的強(qiáng)化擺動(dòng)限制。</p><p> 在一個(gè)鋼結(jié)
54、構(gòu)中,例如,根據(jù)建筑物每平方米的樓層面積的總的平均用量表明其經(jīng)濟(jì)性。圖中曲線A表示一般性的框架在不受水平荷載的作用下鋼的平均重量。上邊界和下邊界之間的間距表示一般的梁—柱框架的重量。結(jié)構(gòu)工程師以發(fā)展結(jié)構(gòu)體系為目標(biāo)。</p><p><b> 框筒結(jié)構(gòu) </b></p><p> 高層建筑結(jié)構(gòu)最大的功效是強(qiáng)度和堅(jiān)固性,為了抵抗風(fēng)荷載,在設(shè)計(jì)時(shí)如果所有的柱基礎(chǔ)能夠互相
55、聯(lián)系起來(lái),,全部的建筑充當(dāng)空心的管子或堅(jiān)硬的盒子。</p><p> 另一種體系是鋼筋混凝土外框筒結(jié)構(gòu)的辦公大樓結(jié)合傳統(tǒng)的剪力墻建筑。該體系由間距很小的柱子構(gòu)成的外框筒與圍繞中心設(shè)備區(qū)的剛性剪力墻內(nèi)筒組成。這就是有名的筒中筒體系,使用這種體系建造設(shè)計(jì)的建筑物可能是目前世界上最高的輕質(zhì)混凝土大樓(52層的休斯敦的貝殼廣場(chǎng)大廈)僅35層的傳統(tǒng)簡(jiǎn)力墻結(jié)構(gòu)。</p><p> 混凝土與鋼筋結(jié)合
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---建筑的組成部分
- 土建專業(yè)畢業(yè)設(shè)計(jì)外文翻譯--建筑的組成部分
- 外文翻譯-數(shù)控機(jī)床的組成部分.doc
- 機(jī)械外文翻譯---數(shù)控機(jī)床的組成部分
- 外文翻譯-數(shù)控機(jī)床的組成部分.doc
- 門窗是建筑的重要組成部分
- 門窗作為建筑外圍護(hù)結(jié)構(gòu)的組成部分
- cis的具體組成部分 mi
- 生殖健康及組成部分
- 室內(nèi)消火栓的類型及組成部分
- 船舶舾裝主要組成部分研究
- 中英文翻譯數(shù)控機(jī)床的組成部分
- 第二講 民用建筑各組成部分設(shè)計(jì)
- 課題結(jié)題報(bào)告組成部分
- research proposal的寫作步驟及組成部分
- 淺談建筑消防工程系統(tǒng)組成部分及管理問(wèn)題
- 廉潔文化是企業(yè)文化的重要組成部分
- 民營(yíng)經(jīng)濟(jì)是“人民經(jīng)濟(jì)”的重要組成部分
- [雙語(yǔ)翻譯]薪酬滿意度外文翻譯--公正認(rèn)知和對(duì)薪酬滿意度組成部分的滿意度
- 汽車底盤四大組成部分
評(píng)論
0/150
提交評(píng)論