關(guān)于代數(shù)整數(shù)環(huán)的K-,2--群的秩.pdf_第1頁(yè)
已閱讀1頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Studying the structure of the K2-group is one of the basic works of algebraic K-theory. Especially to study the structure of the K2-group of OF of algebraic number field F is a very important work, where OF is the ring o

2、f integers ofF. The structure of the cubic number fields is more complicated than that of the quadratic number fields. So it is more difficult to study the structure of tame kernel K2OF of it, where OF is the ring

3、 of integers of the cubic number field F. But the study of it can promote the progress of the study of the structure of K2OF of the whole number fields. The main work of this paper is to study the K2-group of OF of

4、the number field F, and discuss two conditions according to whether F contains the primitive root of unity: on the one hand, the pn -rank formula of the K2OF of the number field F is given that contains the primitive pnt

5、h root of unity. On the other hand, the other work of this paper is that we give the information of 19-rank of K2OF of cubic cyclic number field F that does not contain the primitive 19th root of unity and only has one r

6、amified prime p. In the first chapter, we give the pn-rank formula of the K2OF of the number field F that contains the primitive pnth root of unity. The second chapter is the main part of this paper. First, we

7、give some estimates from below and from above of the 19-rank of K2OF of cubic cyclic number field F that only has one ramified prime p (p > 7 ). In many cases, these estimates suffice to determine the structure of the 19

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論