版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、一、英文原文:一、英文原文:AconfigurablemethodfmultistylelicenseplaterecognitionAutomaticlicenseplaterecognition(LPR)hasbeenapracticaltechniqueinthepastdecades.Numerousapplicationssuchasautomatictollcollectioncriminalpursuittrafficla
2、wenfcementhavebeenbenefitedfromit.AlthoughsomenoveltechniquesfexampleRFID(radiofrequencyidentification)WSN(wirelesssenswk)etc.havebeenproposedfcarIDidentificationLPRonimagedataisstillanindispensabletechniqueincurrentinte
3、lligenttransptationsystemsfitsconveniencelowcost.LPRisgenerallydividedintothreesteps:licenseplatedetectionactersegmentationacterrecognition.ThedetectionsteproughlyclassifiesLPnonLPregionsthesegmentationstepseparatesthesy
4、mbolsactersfromeachotherinoneLPsothatonlyaccurateoutlineofeachimageblockofactersisleftftherecognitiontherecognitionstepfinallyconvertsgreylevelimageblockintoacterssymbolsbypredefinedrecognitionmodels.AlthoughLPRtechnique
5、hasalongresearchhistyitisstilldrivenfwardbyvariousarisingdemsthemostfrequentoneofwhichisthevariationofLPstylesfexample:(1)Appearancevariationcausedbythechangeofimagecapturingconditions.(2)Stylevariationfromonenationtoano
6、ther.(3)StylevariationwhenthegovernmentreleasesnewLPfmat.WesummedthemupintofourfactsnamelyrotationanglelinenumberactertypefmataftercomprehensiveanalysesofmultistyleLPacteristicsonrealdata.Generallyspeakinganychangeofthea
7、bovefourfactscanresultinthechangeofLPstyleappearancethenaffectthedetectionsegmentationrecognitionalgithms.IfoneLPhasalargerotationanglethesegmentationrecognitionalgithmsfhizontalLPmaynotwk.Iftherearemethanoneacterlinesin
8、oneLPadditionallineseparationalgithmisneededbefeasegmentationprocess.Withthevariationofactertypeswhenweapplythemethodfromonenationtoanothertheabilitytoredefinetherecognitiondetection.InRef.Kimetal.usedanSVMtotraintexture
9、classifierstodetectimageblockthatcontainsLPpixels.InRef.theauthsusedGabfilterstoextracttexturefeaturesinmultiscalesmultiientationstodescribethetexturepropertiesofLPregions.InRef.ZhangusedXYderivativefeaturesgreyvaluevari
10、anceAdaboostclassifiertoclassifyLPnonLPregionsinanimage.InRefs.waveletfeatureanalysisisappliedtoidentifyLPregions.Despitethegoodperfmanceofthesemethodsthecomputationcomplexitywilllimittheirusability.Inadditiontexturebase
11、dalgithmsmaybeaffectedbymultilingualfacts.MultilineLPsegmentationalgithmscanalsobeclassifiedintothreeclassesnamelyalgithmsbasedonprojection,binarizationglobaloptimization.Intheprojectionalgithmsgradientcolprojectiononver
12、ticalientationwillbecalculatedatfirst.The“valleys”ontheprojectionresultareregardedasthespacebetweenactersusedtosegmentactersfromeachother.Segmentedregionsarefurtherprocessedbyverticalprojectiontoobtainpreciseboundingboxe
13、softheLPacters.SincesimplesegmentationmethodsareeasilyaffectedbytherotationofLPsegmentingtheskewedLPbecomesakeyissuetobesolved.Inthebinarizationalgithmsgloballocalmethodsareoftenusedtoobtainfegroundfrombackgroundthenregi
14、onconnectionoperationisusedtoobtainacterregions.Inthemostrecentwklocalthresholddeterminationslidewindowtechniquearedevelopedtoimprovethesegmentationperfmance.Intheglobaloptimizationalgithmsthegoalisnottoobtaingoodsegment
15、ationresultfindependentactersbuttoobtainacompromiseofacterspatialarrangementsingleacterrecognitionresult.HiddenMarkovchainhasbeenusedtofmulatethedynamicsegmentationofactersinLP.Theadvantageofthealgithmisthattheglobalopti
16、mizationwillimprovetherobustnesstonoise.thedisadvantageisthatprecisefmatdefinitionisnecessarybefeasegmentationprocess.actersymbolrecognitionalgithmsinLPRcanbecategizedintolearningbasedonestemplatematchingones.Fthefmerone
17、artificialneuralwk(ANN)isthemostlyusedmethodsinceitisprovedtobeabletoobtainverygoodrecognitionresultgivenalargetrainingset.AnimptantfactintraininganANNrecognitionmodelfLPistobuildreasonablewkstructurewithgoodfeatures.SVM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于先驗知識的車牌識別畢業(yè)論文外文翻譯
- 汽車車牌識別系統(tǒng)畢業(yè)論文(帶外文翻譯)
- 汽車車牌識別系統(tǒng)畢業(yè)論文(帶外文翻譯)
- 汽車車牌識別系統(tǒng)畢業(yè)論文(帶外文翻譯)
- 基于matlab車牌識別畢業(yè)論文
- 畢業(yè)論文---車牌識別算法調(diào)研
- 畢業(yè)論文----車牌識別系統(tǒng)的設計
- 外文資料翻譯---車牌識別
- 車牌識別設計與實現(xiàn)(畢業(yè)論文)
- 射頻識別技術(shù)簡介畢業(yè)論文外文翻譯
- 車牌字符識別畢業(yè)設計(含外文翻譯)
- 交通車牌識別系統(tǒng)畢業(yè)論文
- 庫存控制的基本方法畢業(yè)論文外文翻譯
- 畢業(yè)設計----bp神經(jīng)網(wǎng)絡方法對車牌照字符的識別(含外文翻譯)
- 車牌定位與識別的設計與實現(xiàn)-畢業(yè)論文
- 車牌識別中字符分割算法的研究與實現(xiàn)畢業(yè)論文
- lpr系統(tǒng)的車牌字符分割方法研究畢業(yè)論文
- 基于數(shù)字圖像處理的車牌定位與識別畢業(yè)論文
- 鍛造畢業(yè)論文外文翻譯
- ,畢業(yè)論文外文翻譯.pdf
評論
0/150
提交評論