版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、LargeScaleMachineLearningatTwitterJimmyLinAlekKolczTwitterInc.ABSTRACTThesuccessofdatadrivensolutionstodifficultproblemsalongwiththepingcostsofstingprocessingmassiveamountsofdatahasledtogrowinginterestinlargescalemachine
2、learning.ThispaperpresentsacasestudyofTwitter’sintegrationofmachinelearningtoolsintoitsexistingHadoopbasedPigcentricanalyticsplatfm.Webeginwithanoverviewofthisplatfmwhichhles“traditional”datawarehousingbusinessintelligen
3、cetasksftheganization.TheceofthiswkliesinrecentPigextensionstoprovidepredictiveanalyticscapabilitiesthatincpatemachinelearningfocusedspecificallyonsupervisedclassification.Inparticularwehaveidentifiedstochasticgradientde
4、scenttechniquesfonlinelearningensemblemethodsasbeinghighlyamenabletoscalingouttolargeamountsofdata.Inourdeployedsolutioncommonmachinelearningtaskssuchasdatasamplingfeaturegenerationtrainingtestingcanbeaccomplisheddirectl
5、yinPigviacarefullycraftedloadersstagefunctionsuserdefinedfunctions.ThismeansthatmachinelearningisjustanotherPigwhichallowsseamlessintegrationwithexistinginfrastructurefdatamanagementschedulingmonitinginaproductionenviron
6、mentaswellasaccesstorichlibrariesofuserdefinedfunctionsthematerializedoutputofothers.CategiesSubjectDes:H.2.3[DatabaseManagement]:LanguagesGeneralTerms:LanguagesKeywds:stochasticgradientdescentonlinelearningensembleslogi
7、sticregression1.INTRODUCTIONHadooptheopensourceimplementationofMapReduce[15]hasemergedasapopularframewkflargescaledataprocessing.Amongitsadvantagesaretheabilitytohizontallyscaletopetabytesofdataonthoussofcommodityservers
8、easytounderstprogrammingsemanticsaPermissiontomakedigitalhardcopiesofallpartofthiswkfpersonalclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadedistributedfprofitcommercialadvantagethatcopiesbearthisnoticethefull
9、citationonthefirstpage.Tocopyotherwisetorepublishtopostonserverstoredistributetolistsrequiresprispecificpermissionafee.SIGMOD’12May20–242012ScottsdaleArizonaUSA.Copyright2012ACM97814503124791205...$10.00.highdegreeoffaul
10、ttolerance.AlthoughiginallydesignedfapplicationssuchastextanalysiswebindexinggraphprocessingHadoopcanbeappliedtomanagestructureddataaswellas“dirty”semistructureddatasetswithinconsistentschemamissingfieldsinvalidvalues.To
11、dayHadoopenjoyswidespreadadoptioninganizationsrangingfromtwopersonstartupstoFtune500companies.Itliesattheceofasoftwarestackflargescaleanalyticsowesalargepartofitssuccesstoavibrantecosystem.FexamplePig[37]Hive[47]provideh
12、igherlevellanguagesfdataanalysis:adataflowlanguagecalledPigLatinadialectofSQLrespectively.HBasetheopensourceimplementationofGoogle’sBigtable[13]providesaconvenientdatamodelfmanagingservingsemistructureddata.Wearealsowitn
13、essingthedevelopmentofhybriddataprocessingapproachesthatintegrateHadoopwithtraditionalRDBMStechniques[134330]promisingthebestofbothwlds.ThevalueofaHadoopbasedstackf“traditional”datawarehousingbusinessintelligencetaskshas
14、alreadybeendemonstratedbyganizationssuchasFacebookLinkedInTwitter(e.g.[2241]).Thisvaluepropositionalsoliesatthecenterofagrowinglistofstartupslargecompaniesthathaveenteredthe“bigdata”game.CommontasksincludeETLjoiningmulti
15、pledisparatedatasourcesfollowedbyfilteringaggregationcubematerialization.Statisticiansmightusethephrasedeivestatisticstodescribethistypeofanalysis.Theseoutputsmightfeedreptgeneratsfrontenddashboardsothervisualizationtool
16、stosupptcommon“rollup”“drilldown”operationsonmultidimensionaldata.Hadoopbasedplatfmshavealsobeensuccessfulinsupptingadhocqueriesbyanewbreedofengineersknownas“datascientists”.ThesuccessoftheHadoopplatfmdrivesinfrastructur
17、edeveloperstobuildincreasinglypowerfultoolswhichdatascientistsotherengineerscanexploittoextractinsightsfrommassiveamountsofdata.Inparticularwefocusonmachinelearningtechniquesthatenablewhatmightbebesttermedpredictiveanaly
18、tics.Thehopeistominestatisticalregularitieswhichcanthenbedistilledintomodelsthatarecapableofmakingpredictionsaboutfutureevents.Someexamplesinclude:IsthistweetspamnotWhatstarratingistheuserlikelytogivetothismovieShouldthe
19、setwopeoplebeintroducedtoeachotherHowlikelywilltheuserclickonthisbanneradThispaperpresentsacasestudyofhowmachinelearningtoolsareintegratedintoTwitter’sPigcentricanalyticsstackfthetypeofpredictiveanalyticsdescribedabove.F
20、ocus793encodeAretherebestpracticestoadoptWhilethispaperdoesnotdefinitivelyanswerthesequestionsweofferacasestudy.SinceTwitter’sanalyticsstackconsistsmostlyofopensourcecomponents(HadoopPigetc.)muchofourexperienceisgenerali
21、zabletootherganizations.3.TWITTER’SANALYTICSSTACKAlargeHadoopclusterliesattheceofouranalyticsinfrastructurewhichservestheentirecompany.DataiswrittentotheHadoopDistributedFileSystem(HDFS)viaanumberofrealtimebatchprocesses
22、inavarietyoffmats.Thesedatacanbebulkexptsfromdatabasesapplicationlogsmanyothersources.WhenthecontentsofarecdarewelldefinedtheyareserializedusingeitherProtocolBuffers3Thrift.4IngesteddataareLZOcompressedwhichprovidesagood
23、tradeoffbetweencompressionratiospeed(see[29]fmedetails).InaHadoopjobdifferentrecdtypesproducedifferenttypesofinputkeyvaluepairsfthemapperseachofwhichrequirescustomcodefdeserializingparsing.Sincethiscodeisbothregularrepet
24、itiveitisstraightfwardtousetheserializationframewktospecifythedataschemafromwhichtheserializationcompilergeneratescodetoreadwritemanipulatethedata.ThisishledbyoursystemcalledElephantBird5whichautomaticallygeneratesHadoop
25、recdreaderswritersfarbitraryProtocolBufferThriftmessages.InsteadofdirectlywritingHadoopcodeinJavaanalyticsatTwitterisperfmedmostlyusingPigahighleveldataflowlanguagethatcompilesintophysicalplansthatareexecutedonHadoop[371
26、9].Pig(viaalanguagecalledPigLatin)providesconciseprimitivesfexpressingcommonoperationssuchasprojectioniongroupjoinetc.Thisconcisenesscomesatlowcost:PigsapproachtheperfmanceofprogramsdirectlywritteninHadoopJava.Yetthefull
27、expressivenessofJavaisretainedthroughalibraryofcustomUDFsthatexposeceTwitterlibraries(e.g.fextractingmanipulatingpartsoftweets).FthepurposesofthispaperweassumethatthereaderhasatleastapassingfamiliaritywithPig.Likemanygan
28、izationstheanalyticswkloadatTwittercanbebroadlydividedintotwocategies:aggregationqueriesadhocqueries.Theaggregationqueriesmaterializecommonlyusedintermediatedatafsubsequentanalysisfeedfrontenddashboards.Theserepresentrel
29、ativelystardbusinessintelligencetasksprimarilyinvolvescansoverlargeamountsofdatatriggeredperiodicallybyourinternalwkflowmanager(seebelow).Runningalongsidetheseaggregationqueriesareadhocqueriese.g.oneoffbusinessrequestsfd
30、ataprototypesofnewfunctionalitiesexperimentsbyouranalyticsgroup.Thesequeriesareusuallysubmitteddirectlybytheuserhavenopredictabledataaccesscomputationalpattern.Althoughsuchjobsroutinelyprocesslargeamountsofdatatheyareclo
31、serto“needleinahaystack”queriesthanaggregationqueries.ProductionanalyticsjobsarecodinatedbyourwkflowmanagercalledOinkwhichschedulesrecurringjobsatfixedintervals(e.g.hourlydaily).Oinkhlesdataflow3:code.pprotobuf4:thrift.a
32、pache.g5kevinweilelephantbirddependenciesbetweenjobsfexampleifjobBrequiresdatageneratedbyjobAthenOinkwillscheduleAverifythatAhassuccessfullycompletedthenschedulejobB(allwhilemakingabestefftattempttorespectperiodicitycons
33、traints).FinallyOinkpreservesexecutiontracesfauditpurposes:whenajobbeganhowlongitlastedwhetheritcompletedsuccessfullyetc.EachdayOinkscheduleshundredsofPigswhichtranslateintothoussofHadoopjobs.4.EXTENDINGPIGTheprevioussec
34、tiondescribesamatureproductionsystemthathasbeenrunningsuccessfullyfseveralyearsiscriticaltomanyaspectsofbusinessoperations.InthissectionwedetailPigextensionsthataugmentthisdataanalyticsplatfmwithmachinelearningcapabiliti
35、es.4.1DevelopmentHistyTobetterappreciatethesolutionthatwehavedevelopeditisperhapshelpfultodescribethedevelopmenthisty.Twitterhasbeenusingmachinelearningsinceitsearliestdays.SummizeatwoyearoldstartupthatTwitteracquiredpri
36、marilyfitssearchproductin2008hadaspartofitstechnologyptfoliosentimentanalysiscapabilitiesbasedinpartonmachinelearning.AftertheacquisitionmachinelearningcontributedtospamdetectionotherapplicationswithinTwitter.Theseactivi
37、tiespredatedtheexistenceofHadoopwhatonemightrecognizeasamoderndataanalyticsplatfm.Sinceourgoalhasneverbeentomakefundamentalcontributionstomachinelearningwehavetakenthepragmaticapproachofusingofftheshelftoolkitswherepossi
38、ble.Thusthechallengebecomeshowtoincpatethirdpartysoftwarepackagesalongwithinhousetoolsintoanexistingwkflow.Mostcommonlyavailablemachinelearningtoolkitsaredesignedfasinglemachinecannoteasilyscaletothedatasetsizesthatouran
39、alyticsplatfmcaneasilygenerate(althoughmedetaileddiscussionbelow).Asaresultweoftenrestedtosampling.Thefollowingdescribesanotuncommonscenario:LikemostanalyticstaskswebeganwithdatamanipulationusingPigontheinfrastructuredes
40、cribedinSection3.TheswouldstreamoverlargedatasetsextractsignalsofinterestmaterializethemtoHDFS(aslabelsfeaturevects).Fmanytasksitwasaseasytogenerateamilliontrainingexamplesasitwastogeneratetenmilliontrainingexamplesme.Ho
41、wevergeneratingtoomuchdatawascounterproductiveasweoftenhadtodownsamplethedatasoitcouldbehledbyamachinelearningalgithmonasinglemachine.ThetrainingprocesstypicallyinvolvedcopyingthedataoutofHDFSontothelocaldiskofanothermac
42、hine—frequentlythiswasanothermachineinthedatacenterbutrunningexperimentsonindividuals’laptopswasnotuncommon.Onceamodelwastraineditwasappliedinasimilarlyadhocmanner.TestdatawerepreparedsampledusingPigcopiedoutofHDFSfedtot
43、helearnedmodel.TheseresultswerethenstedsomewhereflateraccessfexampleinaflatfilethatisthencopiedbacktoHDFSasrecdsedintoadatabaseetc.Therearemanyissueswiththiswkflowthefemostofwhichisthatdownsamplinglargelydefeatsthepointo
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 大規(guī)模層次文本分類(lèi)解決方案
- 安全網(wǎng)關(guān)大規(guī)?;ヂ?lián)解決方案
- 城市大規(guī)模視頻監(jiān)控集中存儲(chǔ)解決方案
- 大規(guī)模層次文本分類(lèi)的解決方案.pdf
- nastran大規(guī)模計(jì)算常見(jiàn)問(wèn)題解決方案
- 大規(guī)模存儲(chǔ)器的高速并行測(cè)試解決方案.pdf
- 基于HBase的大規(guī)模數(shù)據(jù)存儲(chǔ)解決方案的設(shè)計(jì)和實(shí)現(xiàn).pdf
- 基于機(jī)器學(xué)習(xí)的大規(guī)模文本分類(lèi).pdf
- 大規(guī)模機(jī)器學(xué)習(xí):矩陣低秩近似與在線(xiàn)學(xué)習(xí).pdf
- 基于并行機(jī)器學(xué)習(xí)的大規(guī)模專(zhuān)利分類(lèi).pdf
- 大規(guī)模機(jī)器學(xué)習(xí)理論研究與應(yīng)用.pdf
- 海康威視小規(guī)模nvr監(jiān)控解決方案
- 市解決方案_智慧倉(cāng)儲(chǔ)解決方案
- 市解決方案_智慧黨建解決方案
- 市解決方案_智慧工地解決方案
- 市解決方案_智慧教育解決方案
- 市解決方案_智慧應(yīng)急解決方案
- 4組行動(dòng)學(xué)習(xí)解決方案-績(jī)效
- 解決方案
- 市解決方案_數(shù)字鄉(xiāng)村綜合解決方案
評(píng)論
0/150
提交評(píng)論