版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 外文翻譯</b></p><p> Although once considered a “nontraditional” machining process, EDM has been replacing drilling, milling
2、, grinding and other traditional machining operations in many industries throughout the world. Since its early days as a “tap
3、 busting” method over 50 years ago, EDM has developed into one of the most advanced machining technologies. Today’s EDM
4、equipment uses advanced Computer Numerical Control (CNC) with up to six-axes simultaneous operation and state of-the-art power supply
5、160;technology, which </p><p> The tremendous advancements in EDM technology have been achieved through the collective efforts of
6、160;many dedicated engineers employed by the major EDM builders and by researchers from some of the world’s leading institutions
7、160;and research centers. This report provides an overview of the research studies and developments of these institutions and the&
8、#160;activities of professional societies and other organizations throughout the world that are contributing to the continued advancements
9、160;of Electrical Di</p><p> Mechanisms of Technology Transfer</p><p> Mechanisms of Technology Transfer According to the Federal
10、60;Laboratories Consortium, there are several channels for bringing about the transfer of technology from government or private researc
11、h centers to industry. The following list is a sample of the various mechanisms used</p><p> 1. Cooperative research proj
12、ects between industry and laboratories</p><p> 2. Workshops, seminars, and briefings</p><p> 3. Exclusive/non-exclusive licensing</p>&
13、lt;p> 4. Sponsored research where industry reimburses a lab for work done at the facility.</p><p> 5. Consulting by lab
14、60;personnel. </p><p> 6. Employee exchange where researchers from the lab and industry trade assignments in areas of mutual i
15、nterests. </p><p> 7. Use of lab facilities where certain capabilities are not available at a particular company. </p><p>
16、 8. Laboratory visits to share information and discuss technical problems.</p><p> 9. Publications and other printed literature. </p&
17、gt;<p> 10. Membership in industrial affiliate organizations that are associated with research lab’s.</p><p> As defined in item
18、s 9 and 10, one of the objectives of EDM Technology Transfer (EDMTT) has been to provide a mechanism or source of
19、160;gathering information from research centers with projects relating to EDM, and making this information available to anyone interest
20、ed in the EDM process. One reference source published by EDMTT is the “EDM Technology” volume series, which contain EDM
21、technical reports by universities, EDM manufacturers, or other technical research centers around the world. </p><p> International and
22、160;National EDM Conferences and Discussion Forums </p><p> In an effort to establish a forum for the discussion of EDM r
23、esearch and developments, and help provide a course of instruction in basic and advanced EDM technology, several technical societi
24、es and other groups have established international or national conferences on EDM. </p><p><b> Japan </b></p><p> ? Japa
25、n Society of Electrical Machining Engineers(JSEME) </p><p> Throughout its forty year history, the JSEME has been the predominant
26、160;organization and driving force behind the research and development of EDM and the dissemination of this information in Japan.&
27、#160;All of the major Japanese EDM builders and university EDM researchers present technical reports on the latest EDM research
28、60;and developments at their annual conferences. At the JSEME “All Japan Conference” held in October 1994, thirty-five new EDM
29、0;reports were presented, including the latest research by </p><p> From a recent announcement by Professor Yasuo Kimoto, curr
30、ent President of JSEME, the Society will coordinate a new “International Journal of Electrical Machining” (IJEM). The aims of
31、;the IJEM are: 1) to propagate the latest scientific and technological news in the field of electrical machining methods, 2)&
32、#160;to exchange experiences in putting electrical machining into practice, and 3) inform about the current state-ofthe-art and suggest
33、 directions of further development. IJEM editorial board membe</p><p><b> U.S.A. </b></p><p> ? Society of Manufacturing
34、;Engineers (SME) </p><p> SME sponsors an annual EDM clinic and a fundamentals course.</p><p> ? American Society of Mecha
35、nical Engineers (ASME)</p><p> Starting in 1985, the Production Engineering Division of ASME began a session on nontraditional
36、;machining during their Winter Annual Meeting with EDM as the major topic of discussion. </p><p> ? Modern Machine Shop/Gardne
37、r Management</p><p> Beginning in 1989, Modern Machine Shop Magazine and Gardner Management Services has sponsored the largest
38、;EDM conference and exhibition in the United States. EDMTT has attended all of these conferences. </p><p> ? National Institut
39、e of Standards & Technology (NIST)</p><p> Organized under the U.S. Department of Commerce Technology Administration, NIST has&
40、#160;held conferences on the “Machining of Advanced Materials” and presents technical information on using EDM. </p><p> International&l
41、t;/p><p> Beginning in the sixties, the “International Institution for Production Engineering Research” has coordinated an international
42、60;delegation of the world’s major EDM manufacturer’s and researchers for the “International Symposium for Electro-Machining” (ISEM). The
43、60;International Institution for Production Engineering Research is also known officially as CIRP, which stands for “College International
44、160;pour I’Etude Scientifique des Techniques de Production Mechanique”. ISEM has been a forum of exchange </p><p> EDM Researc
45、h and Development Centers </p><p> Although EDM represents only a small portion of the total machine tool industry worldwide,&
46、#160;the number of laboratories throughout the world performing EDM research and development studies has been growing steadily for
47、;several years. The more in-depth and well organized EDM research programs at various technical centers are funded by the maj
48、or EDM builders or through government research grants. Several EDM manufacturers have also donated machines and supplies to univer
49、sities with limited funds, wh</p><p> The following institutions have established research and development programs on EDM. They
50、60;represent only a partial list of the laboratories and research projects throughout the world that contribute to the advancement
51、s in EDM technology. In addition to the work at advanced research laboratories setup by the major EDM manufacturers, the
52、;work performed at these institutions should have a direct impact on future developments in the EDM industry. </p><p><b>
53、 U.S.A. </b></p><p> Nontraditional Manufacturing Research Center, University of Nebraska-Lincoln </p><p> Under the direction of Profe
54、ssor K. P. Rajurkar, this institution has established one of the world’s leading centers for academic studies and experimental
55、0;research in EDM and other high technology machining processes. Courses taught in advanced manufacturing processes cover a broad
56、range of topics and provide the student with an in depth study of EDM technology. Besides EDM, about 30 other advanced
57、160;manufacturing processes are covered. The following graduate level course description provides a su</p><p> Course Title: Advanced
58、60;Manufacturing Processes (IE 970) Description: </p><p> Advanced manufacturing processes provide an alternative (or sometimes the onl
59、y alternative) for manufacturing complex shapes in a wide variety of materials. This course deals with topics ranging from th
60、e principles of operation, to the integration of these advanced processes into future flexible manufacturing systems. About thirty-one&
61、#160;nontraditional manufacturing processes including Electrical Discharge Machining (EDM), </p><p> Electro-Chemical Machining (ECM), Laser Beam
62、Machining (LBM), Abrasive Jet Machining (AJM), Electrochemical Arc Machining (ECAM), Electron Beam Welding, etc. are covered in this
63、60;course. In the context of these advanced manufacturing processes, the following topics are covered.</p><p> 1. Process Mechanism
64、, Modeling and Simulation </p><p> 2. Surface Integrity </p><p> 3. Tool Design, CAD </p><p> 4. Design of Related Mac
65、hine Tools </p><p> 5. Adaptive Control </p><p> 6. Expert Systems, Neural Networks, Fuzzy Logic Applications</p><p> 7. In
66、tegration within CIM Environment </p><p> 8. Applications </p><p> 9. Environmental and Safety Issues </p><p> In addition to
67、60;the class lectures, experimental projects on Die-Sinking EDM and Wire EDM are also required. </p><p> The following list of
68、 projects provide an overview of past and future EDM research work conducted at the University of Nebraska’s Nontraditional M
69、anufacturing Research Center. </p><p> Projects Conducted Over Past Two Years </p><p> Effect of cryogenic treatment of electrode
70、60;on EDM performance</p><p> This project attempts to study the effect of cryogenic treatment of work and tool electrodes
71、0;on EDM process performance. Cryogenic treatment of the work piece material and electrodes (for EDM and WEDM) was done by
72、60;RPM Carbide, Inc. of Ohio. During cryogenic treatment, the material is cooled at 77 K for 24 hours and brought back
73、160;to ambient temperature. Experiments on WEDM have been carried out using treated wire and untreated wire. It was experimentally
74、 found that the risk of wire rupture was red</p><p> ? Wire EDMing of Polycrystalline Diamond (PCD)</p><p> An e
75、xperimental study has been carried out to determine the effects of parameter settings in a state of the art WED machine&
76、#160;on the machining performance. The WEDM performance in cutting different layers of materials, such as PCD and WC, in the&
77、#160;workpiece have been experimentally and theoretically determined. The mathematical model(s) of thermal stress for a theoretical explanat
78、ion of the removal mechanism of diamond grain based on the numerical solution of Stefan problem is continuing. </p><p> ?
79、 WEDM of Beryllium Copper Alloys</p><p> The main objective of this project is to develop a database of optimal mach
80、ine parameter settings for machining of Beryllium copper alloys of different heights during WEDM. This project is conducted with
81、160;a Charmilles Robofil 100 WED machine. The relationships between the machine settings and machining characteristics such as machinin
82、g speed, surface roughness, and overcut are determined experimentally. The machine setting parameters are charge frequency, charge curr
83、ent, pulse duration, capacitan</p><p> Study of discharge distributions in die-sinking EDM using divided electrode spark detection
84、method</p><p> The principal objective of this project is to study the influence of machining parameters (peak current and
85、0;pulse on-time) and flushing methods on spark characteristics such as sparking efficiency and geometrical distribution of sparks in
86、60;the machining gap. Peak current and pulse on-time change the machining conditions in the gap leading to changes in the
87、0;sparking efficiency and spark distribution. A new method of spark detection system is employed to obtain the spark data. Th
88、e solid tool is div</p><p> Adaptive control systems for die-sinking EDM</p><p> The arc damage in the die-sinking ED
89、M process reduces the machining productivity, decreases the machined surface quality, and increases the machining cost. The main o
90、bjective of this project is to develop adaptive control systems for EDM to improve the process stability, avoid arc damage,
91、160;and increase the machining rate. In this project, a digital EDM gap monitor was developed to precisely detect the time
92、60;ratios of gap states including gap open, normal spark, transient arc, stable arc and short </p><p> Advanced Wire-EDM
93、control system</p><p> In the WEDM process, wire rupture reduces the machining rate. This problem is caused by high power
94、 density along the wire, which is regarded as the ratio of sparking frequency to spark distribution length determined by
95、;the workpiece height. With most of the state-of-the-art WEDM equipment, the sparking frequency can not be on-line monitored and
96、160;controlled, and an optimal pulse off-time to determine the sparking frequency for a given workpiece height is selected in
97、;accordance with manufacturer su</p><p> Future Projects at the University of Nebraska </p><p> ? Abrasive assisted Electrical
98、Discharge Grinding for machining advanced materials</p><p> The machining rate with mechanical grinding of advanced materials, including
99、 electrically conductive ceramics, sintered carbides, and polycrystalline diamonds (PCD), is very low due to their high hardness a
100、nd toughness. The EDM process provides an effective alternative to machine advanced materials. However, the surface quality generated
101、160;by EDM is poor due to the recast layer and micro-cracks on the machined surface. The objective of this project is
102、60;to develop an Electrical Discharge Grinding (E</p><p> ? Advanced on-line monitoring and control system for die-sinking EDM</
103、p><p> Graphite electrodes are popular for die-sinking EDM operations in U.S. industries because of higher machining rates and
104、60;easy of fabrication. During EDM with graphite electrodes, the arc damage occurs frequently and is difficult to avoid. The
105、main objective of this project is to develop an advanced monitoring and control system for die-sinking EDM when using graphit
106、e electrodes. In this project, an advanced and commercial available digital EDM monitor will be developed to detect the time&
107、#160;ratios o</p><p> ? EDM power generator for advanced materials</p><p> When using EDM to machine the high thermal
108、;resistant materials including tungsten carbide, conductive ceramics, PCD and PCB, the discharge waveforms strongly influence the process
109、60;performance. Most commercially available EDM power generators provide only square discharge current pulses. However, with square discharg
110、e pulses, the thermal energy can not be highly concentrated, therefore, the material removal rates for many advanced materials
111、0;including tungsten carbide and conductive ceramics are v</p><p> University of California/Davis</p><p> Research in several EDM
112、60;fields, including (but not limited to) advanced EDM control systems aimed at increasing production and reducing operator attention
113、160;and studies in wire breakage on WEDM. </p><p> Texas A&M University </p><p> EDM studies on difficult to machine m
114、aterials such as tungsten carbide/cobalt composites, titanium diboride or other ceramic composite materials. </p><p><b> 中文原文</b></
115、p><p> 一種新技術(shù)電火花的加工,盡管電火花加工曾經(jīng)被認(rèn)為是非傳統(tǒng)加工過(guò)程,但是電火花在世界范圍內(nèi)許多工業(yè)方面已經(jīng)取代了鉆孔、銑削、磨削和其它傳統(tǒng)加工方法。盡管50年以前的早期它是“tapbusting”的方式,但是電火花已經(jīng)發(fā)展成為最先進(jìn)加工技術(shù)之一。現(xiàn)代電火花加工設(shè)備運(yùn)用先進(jìn)的計(jì)算機(jī)數(shù)字控制,可達(dá)六軸同時(shí)工作和不同的電源技術(shù)。這些能夠作為一面鏡子高精度完成加工。 </p><p>
116、 來(lái)自世界頂尖研究所和研究中心主要的電火花建設(shè)者和研究者雇傭的許多專業(yè)工程師通過(guò)共同努力實(shí)現(xiàn)了電火花技術(shù)的巨大先進(jìn)性。這篇報(bào)道為學(xué)者、研究所的發(fā)展、專職社會(huì)和世界范圍內(nèi)對(duì)電火花的先進(jìn)性不斷做出貢獻(xiàn)的其它組織提供了研究綱要。</p><p><b> 加工技術(shù)的轉(zhuǎn)變 </b></p><p> 根據(jù)聯(lián)邦實(shí)驗(yàn)協(xié)會(huì)調(diào)查,從政府、私人研究中心到工廠有許多帶來(lái)技術(shù)轉(zhuǎn)變的渠道
117、。以下就是不同加工技術(shù)應(yīng)用的抽樣調(diào)查: </p><p> 1.工業(yè)和實(shí)驗(yàn)室之間合作性研究項(xiàng)目。 </p><p> 2.車間、研究會(huì)和簡(jiǎn)報(bào)。 </p><p> 3.獨(dú)家的/非獨(dú)家的許可。</p><p> 4.工廠為工作設(shè)備設(shè)立實(shí)驗(yàn)室進(jìn)行贊助性研究。 </p><p> 5.咨詢實(shí)驗(yàn)室人員。 </p
118、><p> 6.實(shí)驗(yàn)室和工廠貿(mào)易為了相互的利益,職員交換任務(wù)。</p><p> 7.在一家具體的公司里,實(shí)驗(yàn)室設(shè)備使用能力不可獲知。 </p><p> 8.實(shí)驗(yàn)室參觀、分享信息并討論技術(shù)上的問(wèn)題。 </p><p> 9.出版社和其他的印刷文獻(xiàn)。 </p><p> 10.工業(yè)成員與那些和實(shí)驗(yàn)室相關(guān)的組織聯(lián)合
119、在一起。 </p><p> 如項(xiàng)目 9 和 10 所定義的,電火花技術(shù)轉(zhuǎn)變(EDMTT)的目的之一是從有關(guān)電火花項(xiàng)目的研究中心提供技術(shù)或信息源,而且使這些可得信息有利于電火花過(guò)程的任何一個(gè)環(huán)節(jié)。由電火花轉(zhuǎn)變技術(shù)出版的一個(gè)參考信息是電火花技術(shù)專欄系列,它包括由大學(xué)、電火花制造業(yè)者和其它世界各地技術(shù)研究中心提供的電火花技術(shù)報(bào)道。 </p><p>
120、 國(guó)際的和國(guó)內(nèi)電火花參考和討論論壇 </p><p> 為討論電火花研究和發(fā)展建立一個(gè)論壇,并且為基本指導(dǎo)課程和先進(jìn)的電火花技術(shù)提供幫助,一些技術(shù)社團(tuán)和其它組織已經(jīng)建立了關(guān)于電火花的國(guó)際或國(guó)內(nèi)參考。 </p><p><b> 日本 </b></p><p> ·日本電力切割工程師社會(huì)(JSEME) </p>&l
121、t;p> 盡管JSEME有四十年的歷史,但在研究、發(fā)展和傳播電火花以后,它在日本已經(jīng)有了優(yōu)越的組織和驅(qū)動(dòng)力。日本所有主要的電火花建設(shè)者和大學(xué)的電火花研究員在電火花年度會(huì)議上將最近的電火花研究和發(fā)展,用技術(shù)報(bào)告呈現(xiàn)出來(lái)。在JSEME, “所有的日本會(huì)議”于1994年十月召開,呈現(xiàn)了三十五個(gè)新的電火花報(bào)告,包括三菱、Sodick、Makino、日立的最新研究和日本大學(xué)建立的首要研究中心。 </p><p
122、> 日本電力切割工程師團(tuán)體的雜志是官方出版社,它提供關(guān)于日本電火花工業(yè)最新的技術(shù)信息。 教授 Yasuo 的一個(gè)最近公告指出,Kimoto ,JSEME 的現(xiàn)在總統(tǒng), 社會(huì)將會(huì) 調(diào)整為一個(gè)新的 “電力切割的國(guó)際雜志”(IJEM)。IJEM的目的是:1) 傳播電力切割方法領(lǐng)域最新的科學(xué)和科技的新聞,2)交換電力切割用于實(shí)踐中的經(jīng)驗(yàn),3)告知最近的狀態(tài)和建議將來(lái)的
123、發(fā)展方向。IJEM 社論董事會(huì)成員包括從三菱、 Sodick和日本首要研究中心的代表,也包括非日本人成員。 </p><p><b> 美國(guó) </b></p><p> ·制造業(yè)工程師的社會(huì) (SME) </p><p> SME 贊助一個(gè)年度電火花的臨床講義和一個(gè)基本課程。 </p
124、><p> ·機(jī)械工程師的美國(guó)社會(huì) (ASME) </p><p> ·1985 年開始, ASME的生產(chǎn)工程學(xué)在年度冬季會(huì)上,把電火花作為一個(gè)主要的討論項(xiàng)目,召開了一個(gè)關(guān)于非傳統(tǒng)加工的會(huì)議。 </p><p> ·現(xiàn)代的機(jī)械工場(chǎng)/賈德納管理 </p><p> 1989
125、0;年開始,現(xiàn)代機(jī)械工廠雜志和賈德納管理服務(wù)贊助了最近的電火花會(huì)議和在美國(guó)的展覽會(huì)。EDMTT 參加了所有的會(huì)議。 </p><p> ·國(guó)內(nèi)研究標(biāo)準(zhǔn)和技術(shù) (NIST)</p><p> 在商業(yè)的美國(guó)部門之下組織在美國(guó)貿(mào)易技術(shù)管理組織下,NIST就“先進(jìn)材料的加工”問(wèn)題舉行了會(huì)議,并列舉了使用電火花的技術(shù)信息。</p><p>&
126、lt;b> 國(guó)際的 </b></p><p> 六十年代開始,“生產(chǎn)工程學(xué)研究的國(guó)際研究所”為“電加工座談會(huì)”(ISEM)的國(guó)際代表團(tuán),即世界主要的電火花生產(chǎn)商和研究員進(jìn)行了調(diào)整。生產(chǎn)工程學(xué)研究的國(guó)際研究所如CIRP一樣正式地被大家接受,這代表了“國(guó)際學(xué)院培養(yǎng)的IEtude 科技生產(chǎn)機(jī)械學(xué)”。ISEM 已經(jīng)是一個(gè)電火花、激光、ECM和其它高科技加工技術(shù)信息的交換論壇。IS
127、EMXI將會(huì)在瑞士舉行,它的主題范圍包括電火花處理過(guò)程和物理學(xué)、電火花機(jī)械學(xué)、電火花科技、電火花控制和電火花應(yīng)用。 </p><p> EDM 研究和發(fā)展中心 </p><p> 雖然電火花只是全世界工業(yè)總的加工工具的一小部分,但全世界范圍內(nèi)的關(guān)于電火花研究和發(fā)展的實(shí)驗(yàn)室在近幾年內(nèi)飛速增長(zhǎng)。很多技術(shù)中心在主要的電火花建設(shè)者的集資下或通過(guò)政府研究部門的集資,越來(lái)越多的電火花研究
128、項(xiàng)目得到更深入和更好的組織。一些電火花制造商為資金有限的大學(xué)捐贈(zèng)了機(jī)器,這為將來(lái)的工程師獲得親自參與、理解電火花過(guò)程的能力提供了幫助。 </p><p> 下列機(jī)構(gòu)已經(jīng)建立了電火花研究和發(fā)展項(xiàng)目。他們只代表了全世界致力于電火花科學(xué)技術(shù)先進(jìn)性的實(shí)驗(yàn)室的和研究工程的一部分。除了為主要的電火花制造商設(shè)立的先進(jìn)研究實(shí)驗(yàn)事工作之外,也為那些對(duì)電火花工業(yè)的將來(lái)發(fā)展有直接作用的研究所工作。 </p><p
129、><b> 美國(guó) </b></p><p> ·非傳統(tǒng)的制造業(yè)研究中心,內(nèi)布拉斯加-林肯大學(xué) </p><p> 在教授 K. P. Rajurkar的指導(dǎo)下,美國(guó)建立了一個(gè)研究所,它是全世界電火花和其它高科技加工的學(xué)術(shù)研究和實(shí)驗(yàn)領(lǐng)導(dǎo)中心。先進(jìn)制造過(guò)程的課程的教學(xué)覆蓋了一系列主題,為深入研究電火花技術(shù)的學(xué)生提供了幫助
130、。除電火花技術(shù)之外,大約覆蓋了30個(gè)其他的先進(jìn)制造業(yè)加工過(guò)程。下列各項(xiàng)課程在一定水平上為這些研究提供一個(gè)摘要: </p><p> 課程名稱: 先進(jìn)的制造業(yè)加工(IE 970 ) </p><p> 描述: 先進(jìn)的制造業(yè)加工為多種材料制造復(fù)雜的形狀提供另一選擇(或有時(shí)稱為替代選擇)。這課程能夠處理從基本操作到將這些先進(jìn)過(guò)程整合為一個(gè)復(fù)雜的制造系統(tǒng)
131、。包括電火花加工(EDM)、電化學(xué)加工(ECM)、激光加工(LBM)、磨料噴射加工(AJM)、電化學(xué)電弧加工(ECAM)、電子束焊接等等,這個(gè)課程大約覆蓋有三十一個(gè)非傳統(tǒng)制造加工。在先進(jìn)制造加工的文章中,覆蓋了以下主題: </p><p> 1.機(jī)械裝置加工,靠模切和模擬 </p><p><b> 2.表面輪廓 </b></p><p>
132、 3.工具設(shè)計(jì),電腦輔助設(shè)計(jì) </p><p> 4.加工工具相關(guān)的設(shè)計(jì) </p><p><b> 5.適當(dāng)?shù)目刂?</b></p><p> 6.專家系統(tǒng),神經(jīng)網(wǎng)絡(luò),模糊邏輯應(yīng)用 </p><p> 7.CIM 環(huán)境整合 </p><p><b> 8.應(yīng)用 &
133、lt;/b></p><p> 9.環(huán)境的和安全問(wèn)題 </p><p> 除了課程之外,也需要電火花沉淀和電火花線切割實(shí)驗(yàn)項(xiàng)目。 </p><p> 以下所列清單項(xiàng)目為內(nèi)布拉斯加的大學(xué)非傳統(tǒng)加工研究中心的過(guò)去和將來(lái)的電火花研究工作提供了一個(gè)綱要。 </p><p><b> 過(guò)去兩年計(jì)劃</b></p
134、><p> ·電火花運(yùn)行時(shí),電極的低溫處理的效果 </p><p> 這個(gè)計(jì)劃嘗試研究電火花運(yùn)行時(shí),工具電極的低溫處理效果。在俄亥俄州的公司,工件材料和電極的低溫處理是由PRM碳化物完成的。在低溫處理時(shí)候,材料在77K溫度24小時(shí)冷卻到周圍環(huán)境的溫度。已經(jīng)完成了正確對(duì)待已處理的金屬線和未處理的金屬線的WEDM實(shí)驗(yàn)。實(shí)驗(yàn)時(shí)發(fā)現(xiàn),低溫處理金屬線,使金屬線破壞的危險(xiǎn)性減小了30%。關(guān)于
135、電火花沉淀和WEDM的實(shí)驗(yàn)性工作一直在繼續(xù)。 </p><p> ·復(fù)晶體金剛石的電火花線切割(PCD) </p><p> 已經(jīng)實(shí)行的一項(xiàng)實(shí)驗(yàn)性研究決定了WED加工過(guò)程在運(yùn)行時(shí)參數(shù)設(shè)置的效果。WEDM 運(yùn)轉(zhuǎn)在切削材料的不同層面時(shí),在工作件中,像 PCD和WC這樣的材料,是由實(shí)驗(yàn)和理論共同決定的。熱應(yīng)力的數(shù)學(xué)模型一直在繼續(xù),它理論上解釋了基于Stefan數(shù)
136、學(xué)問(wèn)題的金剛石晶粒機(jī)械切削。 </p><p> ·鈹銅合金的WEDM </p><p> 這個(gè)計(jì)劃的主要目的是發(fā)展一個(gè)在 WEDM 的時(shí)候,為不同硬度的鈹銅合金選擇最佳加工參數(shù)設(shè)置的而設(shè)立的數(shù)據(jù)庫(kù)。這個(gè)計(jì)劃由Charmilles Robofil 100機(jī)器引導(dǎo)。機(jī)器設(shè)定和切削特點(diǎn)之間的關(guān)系如同加工速度、表面粗糙度、切削余量一樣,都是由
137、實(shí)驗(yàn)決定的。機(jī)器參數(shù)設(shè)定需要知道周期、當(dāng)前狀態(tài)、脈動(dòng)持續(xù)時(shí)間、功率、金屬線速度、金屬線拉力和金屬材料。最佳化參數(shù)設(shè)定有兩個(gè)目的,也就是取機(jī)制速度最大值和取表面光滑最大值。對(duì)于兩者標(biāo)準(zhǔn)的輸入?yún)?shù)數(shù)據(jù)庫(kù)正在發(fā)展。 </p><p> ·使用分開電極放電方法排泄分布電火花沉淀的研究 </p><p> 這個(gè)計(jì)劃的主要目的是研究加工參數(shù)(峰值電流和瞬時(shí)脈動(dòng))和火花特征的閃爍方法的影響
138、,如加工間隙之間的閃爍效率和幾何分布。峰值電流和瞬時(shí)脈動(dòng)使加工間隙的環(huán)境改變導(dǎo)致閃爍效率和幾何分布。一種火花探視系統(tǒng)的新方法用于獲得火花數(shù)據(jù)。完整的工具被分為許多小部分去識(shí)別不同間隙不同領(lǐng)域的每一個(gè)電火花?;鸹ㄌ揭暱萍挤椒ㄔ诓煌募庸きh(huán)境下,還能夠有效地用于發(fā)現(xiàn)加工的效率。 </p><p> ·電火花沉淀模的自適應(yīng)控制系統(tǒng) </p><p> 電火花沉淀過(guò)程的電弧損害減少了
139、加工效率、降低了加工表面質(zhì)量和提高了加工成本。這個(gè)項(xiàng)目的主要目的是為電火花提高加工過(guò)程的穩(wěn)定性、避免電弧損害和增加加工效率,開發(fā)自適應(yīng)的控制系統(tǒng)。在這個(gè)項(xiàng)目中,已經(jīng)發(fā)明了數(shù)字化電火花間隙監(jiān)測(cè),用于精確地探測(cè)間隙所隔時(shí)間效率,包括間隙開始、常態(tài)火花、短暫的電弧、穩(wěn)態(tài)電弧和短路。圖1所示為監(jiān)視器的線路線圖。這個(gè)系統(tǒng)的獨(dú)有特征是高頻率(HF)的監(jiān)測(cè)技術(shù),它不僅監(jiān)測(cè)當(dāng)前的電弧損害,而且也監(jiān)測(cè)瞬時(shí)電弧視為電弧損害的預(yù)測(cè)信號(hào)。HF探測(cè)是所有EDM電
140、弧損害探測(cè)技術(shù)中最容易實(shí)現(xiàn)的方法。一個(gè)自適應(yīng)的控制系統(tǒng)和電火花自動(dòng)調(diào)節(jié)管理的參考模型已經(jīng)建立了。這些自適應(yīng)的控制系統(tǒng)經(jīng)過(guò)電火花間隙監(jiān)視器和時(shí)實(shí)控制伺服來(lái)監(jiān)測(cè)間隙參數(shù)。擁有這些系統(tǒng),在條件差的電火花加工環(huán)境下,生產(chǎn)率都能得到50%的提高。一個(gè)使用了PI自動(dòng)調(diào)節(jié)方法的電火花自動(dòng)調(diào)節(jié)監(jiān)視器已經(jīng)發(fā)展成為三菱 K35 ED 機(jī)器。這個(gè)系統(tǒng)能夠根據(jù)電火花探測(cè)間隙參數(shù)自動(dòng)地調(diào)節(jié)主軸周期縮進(jìn)的周期時(shí)間。電弧損害能夠完全地避
141、免,而且與人工設(shè)置跳躍周期相比,生產(chǎn)率提高50%。 </p><p> ·先進(jìn)電火花線切割控制系統(tǒng) </p><p> 在 WEDM 加工過(guò)程中,金屬線破壞減少加工效率。這個(gè)問(wèn)題由沿著金屬線的密度高功率所引起的,這被視為電火花頻率和工件高度決定的電火花分布長(zhǎng)度的比例。在大多數(shù)WEDM設(shè)備里,電火花頻率不能時(shí)實(shí)監(jiān)視、控制和最佳脈沖時(shí)間,從而不能根據(jù)制造者提供
142、的數(shù)據(jù)庫(kù),決定給定高度工件的電火花頻率。這個(gè)計(jì)劃的主要目的是發(fā)展一個(gè)先進(jìn)的WEDM監(jiān)測(cè)和控制系統(tǒng),它能夠時(shí)實(shí)監(jiān)測(cè)工件高度的變化和把電火花頻率控制在一個(gè)最佳水平。最新發(fā)明的控制系統(tǒng)包括數(shù)字式電火花頻率監(jiān)視器和擁有電源和伺服系統(tǒng)控制的PC主控制器。PC時(shí)實(shí)監(jiān)控電壓、電火花頻率和根據(jù)工件高度工作臺(tái)自動(dòng)進(jìn)給。這個(gè)系統(tǒng)將工作臺(tái)進(jìn)給控制在最佳速率,并且根據(jù)工件高度時(shí)實(shí)調(diào)整脈沖將電火花頻率控制在最佳水平。電火花頻率總是根據(jù)安全性和高效率來(lái)進(jìn)行調(diào)整,而
143、且能夠根據(jù)高度變化而變化,從而避免了金屬線損害,維持了最佳切削速度。如圖2所示為切削工件時(shí),在這個(gè)系統(tǒng)的控制下,根據(jù)高度變化而時(shí)實(shí)記錄的數(shù)據(jù)。高度識(shí)別誤差為1mm,隨高度變化的識(shí)別反應(yīng)誤差為1秒。擁有這個(gè)控制系統(tǒng)使數(shù)控編程的生產(chǎn)者和機(jī)器操作員的工作簡(jiǎn)化,在切削多種高度的工件時(shí),機(jī)器操作員不需要將工件高度數(shù)據(jù)輸入到機(jī)器中,</p><p> 附屬于先進(jìn)材料的電火花磨削的內(nèi)布拉斯加-林肯的大學(xué)的未來(lái)計(jì)劃 </
144、p><p> 先進(jìn)材料的機(jī)械磨削,包括可導(dǎo)電的陶器、燒結(jié)碳化物和多晶體金剛石(PCD),由于它們的高硬度和高韌性 ,機(jī)械效率非常低。電火花加工提供了一個(gè)有效的加工先進(jìn)材料的方法。然而,由于電火花加工而造成的表面重鑄層和微裂痕,表面質(zhì)量非常低。這個(gè)計(jì)劃的目的是發(fā)展電火花磨削加工(EDG),配有機(jī)械研磨作用的設(shè)備提高放電環(huán)境和切除加工先進(jìn)材料時(shí)的損毀層。如圖3所示的加工過(guò)程。這個(gè)加工方法是使用焊有金剛石的金屬
145、磨輪作為電極。在加工時(shí),磨輪電極高速旋轉(zhuǎn),電火花在工件與電極之間間隙釋放,加工間隙由電火花伺服系統(tǒng)控制。初步的實(shí)驗(yàn)研究表明研磨作用不僅能夠提高電火花的表面質(zhì)量,而且能夠通過(guò)有效地切除腐蝕層和微粒子和提供高速的常態(tài)放電比例與更好的加工穩(wěn)定性來(lái)提高放電間隙的條件。</p><p> ·先進(jìn)的時(shí)實(shí)電火花沉淀的監(jiān)測(cè)和控制系統(tǒng) </p><p> 因?yàn)槭姌O具有比較高的機(jī)械效率和容易
146、制造,所以它在美國(guó)的電火花沉淀操作中應(yīng)用比較廣泛。在有石墨電極的電火花中,電弧損害經(jīng)常發(fā)生,而且很難避免。這個(gè)計(jì)劃的主要目的是電火花沉淀在使用石墨電極時(shí),發(fā)展一個(gè)先進(jìn)的監(jiān)測(cè)和控制系統(tǒng)。在這個(gè)計(jì)劃中,可獲得先進(jìn)的和商業(yè)化的數(shù)字式電火花監(jiān)視器,它將被發(fā)展成為監(jiān)測(cè)間隙狀態(tài)間的時(shí)間比。神經(jīng)網(wǎng)絡(luò)技術(shù)將會(huì)用來(lái)分析由電火花監(jiān)測(cè)系統(tǒng)得來(lái)的間隙電壓、當(dāng)前信號(hào)和間隙狀態(tài)的數(shù)據(jù)。神經(jīng)網(wǎng)絡(luò)和模糊邏輯的識(shí)別系統(tǒng)在石墨電極的電火花加工過(guò)程中,將會(huì)發(fā)展成能夠預(yù)測(cè)電弧
147、損害的系統(tǒng)。先進(jìn)的控制系統(tǒng)將會(huì)發(fā)展為時(shí)實(shí)控制放電電源、電極工具的自動(dòng)轉(zhuǎn)換和伺服系統(tǒng)。 </p><p> ·先進(jìn)材料的電火花電源 </p><p> 當(dāng)使用電火花加工耐高溫材料時(shí),包括鎢碳化物、導(dǎo)電陶器、PCD和PCB等材料,放電波形很大程度地影響加工運(yùn)轉(zhuǎn)過(guò)程。大多數(shù)通過(guò)商業(yè)可獲得的電火花電源僅僅提供方形放電電流脈沖。但是,使用方形放電脈沖,高溫能量不能夠高度集中,因此,許多
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于模糊自適應(yīng)PID的電火花成型加工伺服控制系統(tǒng)的研究.pdf
- 壓電自適應(yīng)微細(xì)電火花加工系統(tǒng)研究.pdf
- 電火花加工外文翻譯
- 電火花線切割自適應(yīng)進(jìn)給控制技術(shù)的研究.pdf
- 壓電自適應(yīng)微細(xì)電火花加工工藝研究.pdf
- 微細(xì)電火花加工機(jī)床控制系統(tǒng)的研究.pdf
- 電火花線切割變厚度加工自適應(yīng)控制技術(shù)的研究.pdf
- 微細(xì)電火花加工伺服控制系統(tǒng)設(shè)計(jì).pdf
- 外文翻譯--電火花加工(EDM).doc
- 外文翻譯--電火花加工(EDM).doc
- 微細(xì)電火花加工控制系統(tǒng)的研制.pdf
- 外文翻譯--電火花加工(EDM).doc
- 外文翻譯--電火花加工(EDM).doc
- 外文翻譯--電火花加工(EDM).doc
- 外文翻譯--電火花加工(EDM).doc
- 新型自適應(yīng)節(jié)能電火花脈沖電源的研究.pdf
- 外文翻譯---電火花線切割工藝進(jìn)給率的控制
- 微細(xì)電火花加工智能模糊控制系統(tǒng)的研制.pdf
- 電火花加工外文文獻(xiàn)翻譯.doc
- CNC電火花加工中脈沖電源控制系統(tǒng)的設(shè)計(jì).pdf
評(píng)論
0/150
提交評(píng)論