2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  翻譯部分:</b></p><p><b>  英文原文</b></p><p>  Mobile platform of rocker-type coal mine rescue robot</p><p>  LI Yunwang, GE Shirong, ZHU Hua, FANG Ha

2、ifang, GAO Jinke</p><p>  School of Mechanical and Electrical Engineering, China University of Mining & Technology, Xuzhou 221008, China</p><p>  Abstract: After a coal mine disaster, especi

3、ally a gas and coal dust explosion, the space-restricted and unstructured underground terrain and explosive gas require coal mine rescue robots with good obstacle surmounting performance and explosion-proof capability. F

4、or this type of environment, we designed a mobile platform for a rocker-type coal mine rescue robot with four independent drive wheels. The composi- tion and operational principles of the mobile platform are introduced,

5、we discuss the f</p><p>  1 Introduction</p><p>  In the rescue mission of a gas and coal dust explosion, rescuers easily get poisoned in underground coalmines full of toxic gases, such as high-

6、concentration CH4 and CO, if ventilation and protection are not up to snuff. Furthermore, secondary or multiple gas explosions may be caused by extremely unstable gases after such a disaster and may cause casualties amon

7、g the rescuers[1]. Therefore, in order to perform rescue missions successfully, in good time and decrease casualties, it is necessary to</p><p>  2 Mobile platform[11-12]</p><p>  Of As shown in

8、 Fig 1, the mobile platform of the rocker-type four-wheel coal mine rescue robot includes a main body, a gear-type differential device,two rocker suspensions and four wheels. The the shell of the differential device is a

9、ttached to the interior of the the main body The two extended shafts of the differential device are supported by the axle seats in the of lat-to early plate of the main the body and connected to the rocker suspensions in

10、stalled at both sides of the main the body. of</p><p>  2.1 Rocker suspension</p><p>  2.1.1 Function</p><p>  The primary role of the rocker suspension is to provide the mobile pla

11、tform with a mobile system that can adapt to the unstructured underground terrain,such as rails, steps, ditches and deposit of rock and coal dumps because of the collapse of the tunnel roof after a disaster. By connectin

12、g the differential device intermediate between the two rocker suspensions, the four drive wheels can touch the uneven ground passively and the wheels can bear the average load of the robot so that it is able to</p>

13、<p>  2.1.2Structure</p><p>  As shown in Fig. 1, the rocker suspension is composed of a connecting block, landing legs and bevel gear transmissions. The angle between the landing legs on each side of

14、 the main body is carefully calibrated. The legs are connected to the connecting block and the terminals, which in turn are connected to the bevel gear transmissions. Fig. 2 illustrates the cal. The DC motor is in the le

15、g and fixed to the connecting cylinder. The motor shaft connects to the bevel gear transmission and the wheel </p><p>  A coal mine environment is full of explosive gases;hence, a rescue robot must be design

16、ed to be flame-proof. The DC motors, for driving each wheel, are installed in the landing legs of the rocker suspensions.At the present low-powered DC motors, available in the market, are of a standard design and not fla

17、me-proof, hence a flame proof structure for these motors must be designed. Given the structural features of the rocker suspension, it is very much necessary that a flame proof design for the la</p><p>  Ther

18、e is also a flameproof connection cavity in the upper section of the leg. In order to save space, the guidance wire is sealed together with the wire holder using a sealant. The seat of the guide wire is installed in the

19、hole of the upper section of the landing leg.Another flameproof joint is formed between the wire holder and the hole. The cavity of the upper section connects to the rabbet structure of the bottom section, with yet anoth

20、er flameproof joint. There is a flame-proof cable entry </p><p>  2.2 Differential device[13-15]</p><p>  2.2.1 Characteristics of the differential mechanism The differential Mechanism of a roc

21、ker-type robot is a motion transfer mechanism with two degrees of freedom, which can transform the two rotating inputs into a rotating output. The output is the linear mean values of the two inputs. If we let 1 and 2 be

22、two angular velocity inputs,the angular velocity output, ω1 and ω2,wo rotational angle inputs and ω be rotational angle output, we have:</p><p><b>  , </b></p><p>  Two rotational i

23、nput components connect to the left and the right rocker suspension of the robot and the output component connects to the main body of the robot. In this way, the swing angles of the left and right rocker suspensions are

24、 averaged by the differential mechanism and the mean value, transformed into the swing angle (pitching angle) of the main body, is the output. It is effective in decreasing the swing of the main body and thus reduces the

25、 terrain effect. Taking the main swing angle</p><p>  2.2.2 Principle of the bevel gear differential mechanism</p><p>  Fig. 3 shows the schematic diagram of the bevel gear differential mechanis

26、m. Two semi-axle bevel gears 1 and 2 mesh with the planetary bevel gear 3 orthogonally. Carrier H connects to planetary bevel gear 3 coaxially. Let the angular velocities of gears 1,2, 3 and carrier H be ω1、ω2、ω3 and ωH

27、. Let the number of their teeth be Z1 , Z 2 and Z3 , where Z1, Z2 . Let the rotational angles of gear 1, 2 and carrier H be φ1、φ2、φH . If we let the relative H then we have:</p><p>  We obtain and </

28、p><p>  2.2.3 Bevel gear differential device</p><p>  Given the above principle of a bevel gear differential mechanism, we designed such a bevel gear differential device, shown in Fig. 4. Fig. 4a i

29、s the outline of the differential device, and Fig. 4b its internal</p><p>  Structure.This bevel gear differential device is composed of a shell, end covers, an axle base, semi-axle bevel gears, planetary be

30、vel gears, a connecting shaft, etc.The end covers and axle beds connect to the shell by screws. In the shell, two planetary bevel gears are coaxial and symmetrically installed at the connecting shaft, with the shaft term

31、inals supported at the end covers. There are bearings between the connecting shaft and bevel gears. The circlips are installed on the connecting shaf</p><p>  Let the pitch and horizontal roll angle be α and

32、β ,then the maximum allowable pitch and horizontal roll angle are as follows:</p><p>  The weight of the robot platform is 20 kg and its maximum load capacity is 15 kg. The robot platform is driven by four D

33、C motors with 60 W power. Its maximum speed is 0.32 m/s.</p><p>  3 Mobile platform test</p><p>  3.1 Simulation test</p><p>  An accurate, simulated 3D model of the robot was Impor

34、ted into the ADAMS software. Using the kinematic pairs in the joints database of the ADAMS/View, the movement of each part of the simulation model is constrained. For simulating the differential action of differential de

35、vices acting on the robot body, a revolute joint between the left and right rockers of the model and the “Ground” is established. Random moments of forces are exerted to the left and right rockers to simulatethe rough ac

36、tion o</p><p>  exerted to the pair of gears of the differential device.After corresp- </p><p>  onding marker points on the robot are established, the swinging angles of the left and right rock

37、ers and the robot body are measured and the</p><p>  curves of the swinging angles along with the time are obtained via the ADAMS/Postprocessor module, shown in Fig. 6. Curves 1 and 2 are swing angle curves

38、of the two rockers, while curve 3 is the swingangle curve of the main body.</p><p>  The bevel gear differential device can average theswing angles of the right and left rockers, and the average value is the

39、 swing angle of the main body.The gap between two teeth and other factors cause the return difference of the gear drive, so when the main body is swinging at the early start-up and through the zero angle, there is a slig

40、ht swinging angle deviation between the simulated and theoretical values.</p><p>  Typical steps, channels, slopes and other complex terrain models are built in the SolidWorks software. For testing the traff

41、icability characteristics and ride comfort of the four wheel robot, all-terrains models are imported into the ADAMS software[16-17]. Then the joints and restraints are rebuilt, Contact Force between the terrain and the w

42、heels is exerted and torque is exerted to each wheel. The running condition of the robot is simulated on the complex terrain,as shown in Fig. 7a. The vertic</p><p>  3.2 Prototype test</p><p>  

43、In order to verify the performance of the robot in surmounting obstacles and adapting to a complex terrain, an obstacle-surmounting test of the robot was carried out on a simple obstacle course built in thelaboratory and

44、 on a complex outdoor terrain bestrewn with messy bricks and stones. Fig. 8 shows the video image of the robot when moving on the complex terrain.The tests indicate that the four drive wheels of the robot can passively k

45、eep contact with the uneven ground and the robot performed w</p><p>  4 Conclusions</p><p>  Coal mine accidents, especially gas and coal dust explosions, occur frequently. Therefore, it is nece

46、ssary to investigate and develop coal mine rescue robots that can be sent into mine disaster areas to carry out tasks of environmental detection and rescue missions after </p><p>  disasters have occurred, i

47、nstead of sending rescuers which might become exposed to danger.</p><p>  2) An underground coal mine environment presents a space-restricted, unstructured terrain environment,with a likely explosive gas atm

48、osph- ere after a disaster.Hence, any mobile system would require a high motion performance and obstacle-surmounting performance oncomp- ex terrain.</p><p>  3) Given an unstructured underground terrain envi

49、ronment and an explosive atmosphere, we investigated an explosion-proof coal mine rescue robot with four independent drive wheels, based on a rocker type structure. Our simulation and test results indicate that the robot

50、 performs satisfactorily, can passively adapt to uneven terrain, is self adaptive and performs well in surmounting obstacles.</p><p>  4) In our study, we only investigated the rocker-type mobile platform of

51、 a coal mine rescue robot. In order to adapt to the underground coal mine environment,we also carried out a flameproof design for the main body. It was necessary to improve the rocker suspensions in order for the robot t

52、o be able to adjust the angle between two landing legs automatically, so that the height of the center of gravity of the robot can be controlled, which should improve the anti-rollover performance of the robo</p>

53、<p><b>  中文譯文</b></p><p>  搖臂式煤礦救援機(jī)器人移動(dòng)平臺</p><p><b>  摘 要</b></p><p>  煤礦災(zāi)害之后,尤其是氣體和煤塵爆炸后,地下空間限制和非結(jié)構(gòu)化的地形以及爆炸性氣體的存在,需要具有良好的越障性能和防爆穩(wěn)定性的煤礦救援機(jī)器人。對于這種類型的環(huán)境,

54、我們設(shè)計(jì)了四個(gè)獨(dú)立的搖臂式煤礦救援機(jī)器人移動(dòng)平臺和獨(dú)立驅(qū)動(dòng)的車輪。介紹了移動(dòng)平臺的組成和運(yùn)作方式,我們討論了礦用隔爆型設(shè)計(jì)搖臂以及它的運(yùn)行方式和錐齒輪差速器的機(jī)械結(jié)構(gòu)。使用ADAMS軟件模擬了不平坦的虛擬地形對機(jī)器人進(jìn)行仿真實(shí)驗(yàn)。仿真結(jié)果表明,差動(dòng)裝置能保持一個(gè)機(jī)器人的主體在搖晃中的平衡。機(jī)器人模型具有良好的實(shí)用價(jià)值。對機(jī)器人原型已經(jīng)進(jìn)行了地形的適應(yīng)性和越障性能的實(shí)驗(yàn)。結(jié)果表明,樣機(jī)具有良好的地形的適應(yīng)性和強(qiáng)大的越障性能。關(guān)鍵詞:煤礦

55、救援機(jī)器人;搖臂懸掛;特殊性;防爆設(shè)計(jì)</p><p><b>  1 介紹</b></p><p>  在瓦斯和煤塵爆炸的事故中執(zhí)行救援任務(wù),救援人員容易在充滿有毒的氣體的煤礦井下中毒,如高濃度CH4和CO,如果保證不了通風(fēng)就會(huì)出現(xiàn)事故。此外,多種氣體混在一起形成極不穩(wěn)定的混合氣體引發(fā)爆炸,并可能造成救援人員傷亡[1]。因此,為了執(zhí)行救援任務(wù)成功,爭取救援時(shí)間和減少

56、傷亡,就必須發(fā)展煤礦救援機(jī)器人。機(jī)器人代替了救援人員進(jìn)入災(zāi)區(qū)和執(zhí)行任務(wù)的環(huán)境檢測、搜尋受傷的礦工和災(zāi)難發(fā)生后的幸存者。</p><p>  這個(gè)機(jī)器人搜救工作的首要任務(wù)是進(jìn)入災(zāi)區(qū)。這是困難的機(jī)器人進(jìn)入限制空間和非結(jié)構(gòu)化的地下地形,所以這些移動(dòng)系統(tǒng)需要很好的越障性能和運(yùn)動(dòng)性能在這種惡劣環(huán)境執(zhí)行任務(wù)[2],使用一些傳感器能夠在低能見度和充滿爆炸性氣體和塵埃的環(huán)境下完成對地形的識別;因此,假定的移動(dòng)系統(tǒng)應(yīng)該盡可能是獨(dú)立

57、的傳感器和控制系統(tǒng)[3]。國內(nèi)和國外煤礦救援機(jī)器人的研究才剛剛起步。大多數(shù)機(jī)器人原型都是簡單的輪式和跟蹤機(jī)器人。桑迪亞國家實(shí)驗(yàn)室智能系統(tǒng)和機(jī)器人技術(shù)中心(ISRC)所開發(fā)的礦山勘探機(jī)器人RATLER,使用的是輪式移動(dòng)系統(tǒng)[4]??▋?nèi)基梅隆大學(xué)的機(jī)器人研究中心開發(fā)了一個(gè)自治的礦藏的開采機(jī)器人,稱為“Groundhog”[5]。由 Remotec 公司制造的 V2 煤礦井下搜救探測機(jī)器人和中國礦業(yè)大學(xué)的CUMT-1,使用一個(gè)雙履帶的移動(dòng)系統(tǒng)

58、[6-7]。這四個(gè)樣品都受到地下煤礦環(huán)境的嚴(yán)重限制。搖臂式機(jī)器人在復(fù)雜的地形下已經(jīng)具有良好的性能。所有三個(gè)火星探測器,“索杰納”、“勇氣號”、“機(jī)遇號” 火星車均采用了六輪獨(dú)立驅(qū)動(dòng)的搖桿-轉(zhuǎn)向架移動(dòng)系[8-9]。美國噴氣推進(jìn)實(shí)驗(yàn)室開發(fā)出來的Rocker-Bogie,實(shí)驗(yàn)成功登陸上火星</p><p>  2 移動(dòng)平臺[11]</p><p>  圖1所示,移動(dòng)平臺的搖臂式四輪煤礦營救機(jī)器人

59、包括一個(gè)主體,齒輪式差動(dòng)設(shè)備,兩個(gè)搖臂懸掛和四個(gè)輪子。外殼通過差動(dòng)設(shè)備連接到內(nèi)部主體。差動(dòng)的兩個(gè)擴(kuò)展槽設(shè)備支持在橫向的軸座板的主體,并連接到兩邊的安裝搖臂懸浮主體上。四個(gè)輪子分別連接到錐齒輪傳動(dòng)終點(diǎn)站四個(gè)著陸的腿。四個(gè)輪子都是獨(dú)立的由一個(gè)直流電機(jī)驅(qū)動(dòng),安裝在著陸腿懸掛的搖臂下。一個(gè)用隔爆型設(shè)計(jì)腿已經(jīng)制定,其中包括用隔爆型電機(jī)腔和隔爆型連接腔。通過電纜入口裝置,電源和控制直流電動(dòng)機(jī)的電纜連接到電源和控制器的主體。 </p>

60、<p><b>  2.1搖臂懸掛</b></p><p><b>  2.1.1功能</b></p><p>  搖臂懸架的主要作用是提供的移動(dòng)系統(tǒng)能適應(yīng)非結(jié)構(gòu)化井下地形的移動(dòng)臺,像軌道,臺階,壕溝和巖石的礦床等由于隧道頂部倒塌的煤炭傾倒災(zāi)難發(fā)生后。通過連接差動(dòng)裝置中間之間的兩個(gè)搖臂懸浮液,四個(gè)驅(qū)動(dòng)輪可以接觸到凹凸不平的地面被動(dòng)車輪可

61、以承受的平均負(fù)載機(jī)器人,所以,它是能夠跨越軟地形。車輪可以提供足夠的推進(jìn)力,使機(jī)器人通過超越不均勻的障礙,并通過地形。</p><p><b>  2.1.2 結(jié)構(gòu)</b></p><p>  正如圖1所示,搖臂懸掛組成連接塊,著陸腿和錐齒輪傳動(dòng)。著陸之間的角度每個(gè)主體一側(cè)的腿被仔細(xì)校正。腿被連接到連接塊和終端,這反過來又連接錐齒輪傳動(dòng)。圖2說明結(jié)構(gòu)降落腿。它分為上層

62、和底部。底部是圓柱。直流電動(dòng)機(jī)是在腿和固定連接缸。電機(jī)軸連接到錐齒輪傳動(dòng)和輪也連接傳輸。上部有中心盲孔連接是通過箕舌線形成的底部,通過連接腔。通過電纜入口裝置的上半部分,從主電機(jī)功率和控制電纜機(jī)器人的身體被放到連接腔并連接到接線端子,反過來,連接線持有人的指導(dǎo)線。另一個(gè)指導(dǎo)線的一端連接在電機(jī)的底部。</p><p><b>  2.1.3防爆設(shè)計(jì)</b></p><p&g

63、t;  一個(gè)煤礦環(huán)境充滿爆炸性氣體;因此,營救機(jī)器人必須設(shè)計(jì)為隔爆型。直流電機(jī),用于驅(qū)動(dòng)每個(gè)輪子,是安裝在著陸的腿搖臂中。在目前的低功率的直流電機(jī),可選市場,是標(biāo)準(zhǔn)的設(shè)計(jì)而不是防爆、因此一個(gè)防爆結(jié)構(gòu)對于這些汽車必須設(shè)計(jì)。給定的結(jié)構(gòu)特點(diǎn)搖臂懸架,它非常有必要防爆設(shè)計(jì)為著陸的腿被執(zhí)行。</p><p>  有兩個(gè)重要的問題需要考慮這型礦用隔爆型設(shè)計(jì)。首先,需要一個(gè)防爆腔,在這種標(biāo)準(zhǔn)直流電機(jī)安裝。鑒于防爆設(shè)計(jì)要求,一群

64、關(guān)節(jié)型礦用隔爆型電動(dòng)機(jī)應(yīng)之間形成軸和傳動(dòng)軸洞。通常,電機(jī)軸由制造商太短的遵守防爆關(guān)節(jié)的要求,因此電機(jī)軸需要擴(kuò)展。其次,采用防爆連接型腔應(yīng)設(shè)計(jì)成領(lǐng)導(dǎo)電纜到連接腔通過隔爆型電纜條目設(shè)備。直流電機(jī),尤其是有刷直流電機(jī),可能產(chǎn)生的火花在正常運(yùn)行和當(dāng)電機(jī)負(fù)載很高,工作電流可能超過5A,這超過了當(dāng)前的限制附錄C2中國國家標(biāo)準(zhǔn)的要求GB3836.2 -2000。因此,電動(dòng)機(jī)電源和控制電纜不能直接在連接腔。</p><p>  

65、考慮到這些要求,著陸的腿上有被設(shè)計(jì)為隔爆型單位,如圖2所示。一個(gè)細(xì)長軸套筒組裝而成的電機(jī)軸,在同樣的半徑內(nèi)的電機(jī)軸,這是電機(jī)軸被擴(kuò)展。前面的法蘭電機(jī)的固定在中聯(lián)板的連接缸。這個(gè)電機(jī)軸軸袖的經(jīng)過中心孔嵌有黃銅布什然后連接到輸入齒輪傳動(dòng)齒輪最后的底部的著陸腿。因此,隔爆型關(guān)節(jié)之間形成的電機(jī)軸和傳動(dòng)軸套筒之間,以及軸套筒和黃銅。終端底部的腿的連接連接圓筒和隔爆型聯(lián)合組成外部圓柱表面之間的終端圓柱表面和內(nèi)部的連接缸。</p>&l

66、t;p>  還有一個(gè)防爆連接腔腿的上層。為了節(jié)省空間,指導(dǎo)線是密封連同電線持有人使用密封劑。導(dǎo)線的座位安裝在洞的著陸支架的上層。另一個(gè)防爆聯(lián)合間形成電線持有人和洞。上層的空腔連接到榫接結(jié)構(gòu)的底部,用另一個(gè)防爆聯(lián)合。有一個(gè)防爆電纜入口設(shè)備結(jié)束時(shí)的上層著陸的腿。因此,隔爆型連接腔形成的上層的腿。</p><p>  基于結(jié)構(gòu)描述,標(biāo)準(zhǔn)直流汽車被安裝在隔爆型孔的腿的底部。電力和控制電纜電機(jī)的連接到防爆連接腔的上層

67、通過導(dǎo)線持有人。此外,電纜防爆主體機(jī)器人的連接到連接腔通過防爆電纜入口設(shè)備。因此,防爆設(shè)計(jì)的著陸支架的搖臂懸掛部分。</p><p><b>  2.2 差動(dòng)裝置</b></p><p>  搖桿式機(jī)器人差動(dòng)機(jī)構(gòu)是一種二自由度運(yùn)動(dòng)轉(zhuǎn)換機(jī)構(gòu),能夠?qū)?個(gè)轉(zhuǎn)動(dòng)輸入轉(zhuǎn)化為1個(gè)轉(zhuǎn)動(dòng)輸出,且輸出為兩個(gè)輸入的線性平均值。設(shè)兩個(gè)輸入為轉(zhuǎn)速ω1、ω2, 輸出為轉(zhuǎn)速ω。, 兩個(gè)輸入為轉(zhuǎn)角

68、、輸出為轉(zhuǎn)角中, 則應(yīng)滿足以下關(guān)系式:</p><p><b>  , </b></p><p>  將該機(jī)構(gòu)的兩個(gè)輸入分別與機(jī)器人的左右搖桿部分連接, 將其輸出與機(jī)器人主車體連接, 這樣, 該機(jī)構(gòu)可將機(jī)器人左右搖桿的擺角進(jìn)行線性平均, 并轉(zhuǎn)化為機(jī)器人主車體的擺角輸出, 以保持機(jī)器人主車體的相對平衡, 有效地減小地形變化對主車體的影響。若把機(jī)器人主車體的擺角視為輸入,

69、 左右兩搖桿的擺角為輸出, 則該機(jī)構(gòu)將此轉(zhuǎn)動(dòng)輸入分解為兩個(gè)不同的轉(zhuǎn)動(dòng)輸出, 則輸入為兩個(gè)輸出的線性平均值, 這樣有助于機(jī)器人較為均勻地向各個(gè)車輪分配車體重量, 且可使得各車輪能隨著地面的起伏被動(dòng)地自由調(diào)整位置, 以適應(yīng)復(fù)雜的地形環(huán)境。</p><p>  圓錐齒輪齒合型差動(dòng)機(jī)構(gòu)的原理圖如圖3所示,兩中心錐齒輪1、2均與行星錐齒輪3正交齒合,系桿H支撐行星錐齒輪3。設(shè)齒輪1、2、3與系桿H的轉(zhuǎn)速分別為ω1、ω2、ω

70、3、ωH;齒輪的齒數(shù)分別為Z1、Z2、Z3,則Z1=Z2;齒輪1、2及系桿H的轉(zhuǎn)角分別為:φ1、φ2、φH,則錐齒輪1、2相對系桿H的傳動(dòng)比為:</p><p><b>  可得 和 </b></p><p>  2.2.1 錐齒輪差速器裝置鑒于上述原則的錐齒輪差速器機(jī)制,我們設(shè)計(jì)了這樣一個(gè)錐齒輪差速器設(shè)備,如圖4。圖4a是大綱差速裝置外觀,圖4b其內(nèi)部結(jié)構(gòu)。它可

71、以清晰的看到這傘齒輪差動(dòng)機(jī)制可以用于搖臂式移動(dòng)機(jī)器人。</p><p>  這錐齒輪差速器裝置組成外殼,端蓋,軸距,半橋錐齒輪,行星錐齒輪,連接軸,等等。端蓋和車軸的底座通過螺絲連接到外殼。兩個(gè)行星錐齒輪同</p><p>  軸對稱的安裝在連接軸上,在底部支持軸終端覆蓋。軸和錐齒輪之間有軸承連接。擋圈安裝在連接軸上限制軸承的負(fù)荷。兩個(gè)半橋錐齒輪被分開安置在兩軸座上,兩軸座是對稱的固定在外

72、殼上的和兩個(gè)半橋錐齒輪網(wǎng),兩個(gè)行星錐齒輪正交。兩橋基本上具有相同的結(jié)構(gòu)。半橋位于錐齒輪的軸承,軸套在軸床擋圈上。當(dāng)差動(dòng)設(shè)備安裝在機(jī)器人上,兩軸連接到左邊和右邊的半橋錐齒輪左邊和右邊的搖臂。差動(dòng)的外殼被固定在機(jī)器人的主體上。</p><p>  2.3 機(jī)器人移動(dòng)平臺的基本參數(shù) </p><p>  圖5顯示了領(lǐng)先的機(jī)器人平臺的基本參數(shù)。臂長360mm,腿間夾角,輪胎直徑d=200mm,軸距

73、,機(jī)器人寬i=670mm,搖臂中心高度,主體輪廓尺寸長a=400mm,高b=200mm,寬f=310mm,主體輪廓頂部離地高度c=522mm,重心離地高度h=360mm,搖臂擺動(dòng)角度左(φ1)和右(φ2)范圍為(-45°~ 45°)。</p><p>  令俯仰角和橫向側(cè)傾角為α和β,允許機(jī)器人的最大俯仰角和側(cè)傾角如下: </p><p>  機(jī)器人平臺的重量是20公斤

74、,其最大負(fù)載能力是15公斤。機(jī)器人平由四個(gè)直流電動(dòng)機(jī)驅(qū)動(dòng),功率為60瓦。其最大速度為0.32米/秒。</p><p>  3 移動(dòng)平臺測試3.1模擬試驗(yàn) </p><p>  把一個(gè)精確地模擬機(jī)器人的三維模型導(dǎo)入ADAMS軟件。使用ADAMS對關(guān)節(jié)數(shù)據(jù)庫仿真結(jié)果表明,模擬的每個(gè)部分的運(yùn)動(dòng)模型的約束。對于模擬。</p><p>  的差動(dòng)器件的行動(dòng)機(jī)器人身體,左

75、,右轉(zhuǎn)動(dòng)聯(lián)合建立模型和“接觸地面”的搖臂。外力的隨機(jī)時(shí)刻的施加在左側(cè)和右側(cè)的搖臂上來模擬搖臂在粗糙的地形上行動(dòng)。對于模擬的之變動(dòng)精確性,接觸力差動(dòng)設(shè)備充分發(fā)揮雙差動(dòng)裝置齒輪。在機(jī)器人上的相應(yīng)標(biāo)記點(diǎn)成立后,通過ADAMS后處理模塊,擺動(dòng)角度的左邊和右邊搖臂和機(jī)器人身體測量和隨著時(shí)間的擺動(dòng)角度而獲得曲線,如圖6。曲線1和2是擺角兩個(gè)搖臂的曲線,而曲線3是差動(dòng)裝置主體的角度曲線。</p><p>  `錐齒輪差動(dòng)裝置可

76、平均右側(cè)搖臂和左側(cè)搖臂的擺動(dòng)角度,平均值為主體的擺角。輪齒之間的間隙是造成齒輪傳動(dòng)回差之間的差距,所以在初期啟動(dòng)經(jīng)過零角度時(shí),主體是搖擺不定的,仿真時(shí)在允許的角度之間有輕微的擺動(dòng)的和理論上的偏差值。</p><p>  使用SolidWorks軟件建立典型的階梯,壕溝,斜坡和其他復(fù)雜地形模型。用于測試四輪機(jī)器人的通過性的和平順舒適性,將全地形模型導(dǎo)入到ADAMS軟件[16-17]。然后重建關(guān)節(jié)和約束,接觸力地形和

77、車輪施加之間轉(zhuǎn)矩施加到每個(gè)車輪。運(yùn)行條件機(jī)器人是仿真在復(fù)雜的地形上,如圖7a。垂直位移,身體速度的重心和加速度曲線四個(gè)輪子的中心,因?yàn)榭梢缘玫饺鐖D7b~7d所示。</p><p>  根據(jù)曲線,主體的重心位移曲線(mainbody_d曲線)是非常順利的,速度和加速度是四個(gè)輪子的平均值。模擬結(jié)果表明,機(jī)器人移動(dòng)平臺在復(fù)雜地形上具有良好的通過性和舒適性。</p><p><b>  

78、3.2 原型試驗(yàn)</b></p><p>  為了驗(yàn)證機(jī)器人的越障性能和復(fù)雜地形適應(yīng)性,機(jī)器人越障測試在一個(gè)有簡單障礙物的實(shí)驗(yàn)室內(nèi)和一個(gè)有著凌亂的磚頭和石塊室外復(fù)雜環(huán)境中進(jìn)</p><p>  行的。圖8是截取機(jī)器人在復(fù)雜地形上移動(dòng)時(shí)的視頻中的圖片。試驗(yàn)表明,四個(gè)驅(qū)動(dòng)輪機(jī)器人可以被動(dòng)地保持與不均勻地面接觸和機(jī)器人克服移動(dòng)時(shí)遇到的障礙。在不平的地面上移動(dòng)時(shí),主體中的差動(dòng)裝置通過搖

79、臂能有效的減小主體的顛簸。機(jī)器人能跨越260毫米高的障礙。只有大搖臂支腿之間的障礙出現(xiàn)才會(huì)阻止前進(jìn)。四個(gè)輪子的機(jī)器人的越障性能,顯然大于上一代同尺寸的履帶機(jī)器人。</p><p>  4 結(jié)論1)煤礦事故,特別是天然氣和煤炭粉塵爆炸,頻頻發(fā)生。因此,研究和開發(fā)可以進(jìn)入到礦難災(zāi)區(qū)的煤礦救援機(jī)器人,完成環(huán)境監(jiān)測和救援任務(wù)的使命,代替救援人員,減少二次災(zāi)難的發(fā)生。2)受煤礦井下復(fù)雜環(huán)境空間的限制,非結(jié)構(gòu)化的地形

80、環(huán)境,有可能在災(zāi)難發(fā)生后存在著爆炸性氣體環(huán)境。因此,任何移動(dòng)通信系統(tǒng)將需要很高的本安性能和必要的越障能力。3)鑒于非結(jié)構(gòu)化地下的地形環(huán)境爆炸性氣體環(huán)境中,我們調(diào)查防爆煤礦救援機(jī)器人四個(gè)獨(dú)立驅(qū)動(dòng)車輪,基于搖臂類型結(jié)構(gòu)。我們的模擬和測試結(jié)果表明,機(jī)器人的表現(xiàn)令人滿意,可以被動(dòng)地適應(yīng)不平坦的地形,自適應(yīng)性和越障性能表現(xiàn)良好。</p><p>  4)在我們的研究中,我們只調(diào)查的搖臂式煤礦救援機(jī)器人的移動(dòng)平臺。在為了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論