版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 杭州電子科技大學(xué)</b></p><p> 畢業(yè)設(shè)計(jì)外文文獻(xiàn)翻譯</p><p> 模擬空房情況展望電子商務(wù)中的個(gè)人電腦銷售</p><p> 楊李 IBM公司T.J.沃森研究中心 </p><p><b> 摘要</b></p><p>
2、; 對于新設(shè)計(jì)或改造業(yè)務(wù)流程,準(zhǔn)確地預(yù)測業(yè)務(wù)進(jìn)行,如成本和客戶服務(wù)的實(shí)際之前部署,是非常很重要的。我們已經(jīng)成功地開發(fā)和利用仿真模型,為IBM的個(gè)人電腦業(yè)務(wù)通過建模多個(gè),離散事件,如客戶為了抵達(dá),補(bǔ)充規(guī)劃和可用性,數(shù)據(jù)刷新,和不確定性的需求預(yù)測,訂單規(guī)模和消費(fèi)者心目中的產(chǎn)品功能。使用模型,我們能夠預(yù)測動態(tài)的可用性,發(fā)貨日期,并確定了其他改進(jìn)機(jī)會。我們還研究如何不同的庫存政策,規(guī)劃政策和供應(yīng)采購政策影響企業(yè)業(yè)績等指標(biāo)庫存和客戶服務(wù)。<
3、;/p><p><b> 1引言</b></p><p> 對于電子商務(wù)企業(yè),如基于Web的銷售電腦,為客戶提供所需的準(zhǔn)備時(shí)間來裝運(yùn)(若干天的時(shí)間將產(chǎn)品發(fā)運(yùn)之后,為了放置)。在當(dāng)今競爭激烈的市場,實(shí)際運(yùn)送產(chǎn)品時(shí)間是一個(gè)成功的關(guān)鍵因素。確定籌備時(shí)間,以確定和裝運(yùn)向客戶提供在多次在客戶的網(wǎng)上購物過程。但如當(dāng)新的業(yè)務(wù)計(jì)劃,業(yè)務(wù)變革計(jì)劃或商業(yè)環(huán)境預(yù)期的變化,是不容易準(zhǔn)確地估計(jì)
4、的概況預(yù)期船日期,如范圍,標(biāo)準(zhǔn)差,斜及其隨時(shí)間變化等自發(fā)貨日期這些直接關(guān)系到客戶服務(wù),這一點(diǎn)在發(fā)貨日期項(xiàng)目之前是非常重要準(zhǔn)確,一個(gè)新的配置文件是執(zhí)行業(yè)務(wù)流程或其變化是執(zhí)行。</p><p> 離散事件仿真已經(jīng)有幾個(gè)幾十年來模擬隨機(jī)行為的材料,服務(wù)和信息流等在分析過程制造業(yè),服務(wù)業(yè)和各種業(yè)務(wù)。 尤其是,供應(yīng)鏈管理( SCM )的地區(qū)模擬方法已被用于評價(jià)其有效性。大部分的這種用法一直是根據(jù)不同的生產(chǎn)和銷售情況調(diào)查的
5、庫存水平和客戶服務(wù)的業(yè)績和政策,庫存,制造,補(bǔ)充和運(yùn)輸。麥克萊倫( 1992 )使用模擬研究的影響,變異需求/供應(yīng)商的客戶服務(wù)的反應(yīng),以便周期和庫存管理。Hieta ( 1998年)的效果分析替代產(chǎn)品結(jié)構(gòu),替代清單和生產(chǎn)控制方法對庫存和客戶服務(wù)管理。 Bagchi等( 1998年)評價(jià)設(shè)計(jì)和操作的供應(yīng)鏈,用模擬和優(yōu)化,分析供應(yīng)鏈管理的問題,如地點(diǎn), 增資政策,生產(chǎn)政策,交通運(yùn)輸政策,畜水平,交貨時(shí)間和客戶服務(wù)。 議( 2002 )分析了
6、影響汽車混合模型和選擇的主要供應(yīng)鏈績效如客戶等待時(shí)間,條件不匹配。</p><p> 業(yè)務(wù)流程建模的另一個(gè)領(lǐng)域是模擬方法積極用來識別業(yè)務(wù)改善的機(jī)會的評估業(yè)務(wù)進(jìn)程的政策,程序辦法,并充分估計(jì)資源的各項(xiàng)工作在一個(gè)業(yè)務(wù)流程。李等人 ( 2003年)模擬業(yè)務(wù)流程的計(jì)算機(jī)制造商,并確定了大量的工藝改進(jìn)機(jī)會在企業(yè)管理中的循環(huán)時(shí)間變化的處理步驟和適當(dāng)?shù)姆峙滟Y源應(yīng)用。</p><p> 在這項(xiàng)工作中,
7、我們描述了仿真模型的估計(jì)供應(yīng)前景,例如,預(yù)計(jì)日期和船舶其準(zhǔn)確性電子商務(wù)業(yè)務(wù)在終端產(chǎn)品從配置的不同組成部分的客戶。 該模型模擬的效果是隨機(jī)客戶購物交通;秩序的不確定性大小,客戶的喜好產(chǎn)品特點(diǎn)和需求預(yù)測,庫存政策,采購政策和供應(yīng)規(guī)劃政策; 生產(chǎn)準(zhǔn)備時(shí)間等的概況船舶日期。 模擬模型提供了重要的統(tǒng)計(jì)資料供應(yīng)前景和客戶的服務(wù)企業(yè)投產(chǎn),使智能業(yè)務(wù)作出決定之前投資。那個(gè)模型還估計(jì)的準(zhǔn)確性船舶日期確定頻率所產(chǎn)生的數(shù)據(jù)通信之間的計(jì)算機(jī)系統(tǒng)支持的網(wǎng)上業(yè)務(wù)。
8、對于多個(gè)數(shù)量訂單,仿真模型還計(jì)算船舶裝運(yùn)日期部分,如果它是可選的計(jì)算出貨量。</p><p><b> 2模擬分量空房情況</b></p><p> 提供大量的組件中使用計(jì)算日期的船舶客戶的要求和命令。 供應(yīng)量的變化是由于四個(gè)分立事件模擬。它改變客戶訂單發(fā)行后,作為補(bǔ)充措施,是作為數(shù)據(jù)刷新這樣做,并向前進(jìn)行。有兩個(gè)實(shí)例供應(yīng)陣列的組成部分;一個(gè)代表提供實(shí)時(shí)(動態(tài)鑒于
9、情況而定) , 另一個(gè)則代表根據(jù)已知情況內(nèi)容在可用性數(shù)據(jù)庫(靜態(tài)鑒于情況而定)當(dāng)時(shí)的情況。后者可用性刷新了批處理的時(shí)間表由于拖延履行的進(jìn)程。例如,提供數(shù)據(jù)可以刷新每隔幾分鐘或小時(shí)之間的差異,并認(rèn)為這些動態(tài)靜態(tài)鑒于提供的數(shù)據(jù)引起的準(zhǔn)確性船舶日期計(jì)算。</p><p><b> 3.1訂單生成事件</b></p><p> 客戶訂單中產(chǎn)生的發(fā)明在某些隨機(jī)區(qū)間之間,因?yàn)?/p>
10、它們的某些分布模型職能。在這個(gè)時(shí)候,為了下一代,每一個(gè)命令被指定的一個(gè)或多個(gè)項(xiàng)目,并在每一行項(xiàng)目的分配與一個(gè)或一個(gè)以上的數(shù)量。這項(xiàng)任務(wù)每個(gè)屬性秩序的概率模型分布函數(shù)為基礎(chǔ)的歷史銷售數(shù)據(jù)或預(yù)期在今后的業(yè)務(wù)。訂單穿過業(yè)務(wù)流程中所界定的仿真模型,并當(dāng)訂單達(dá)到了一定量時(shí),模擬客戶提交秩序,指定供應(yīng)數(shù)量組成部分是保留給秩序,并正在遞減從可用性。分配的具體組成部分在決定采購政策,分配部分功能優(yōu)先,客戶類等。</p><p>
11、<b> 3.2補(bǔ)貨事件</b></p><p> 作為積木組件消費(fèi)產(chǎn)品被出售給顧客,獲得額外的元件通過規(guī)劃的供應(yīng)。這項(xiàng)活動,通常稱為供應(yīng)規(guī)劃,提前發(fā)生,例如,月,周或天前元件實(shí)際需要,以適應(yīng)供應(yīng)的準(zhǔn)備時(shí)間。供應(yīng)的頻率規(guī)劃還可以月,周,日。由于供應(yīng)規(guī)劃,供應(yīng)的部分補(bǔ)充在某些頻率和數(shù)量。增資頻率可以是固定的間隔,如每天,每周等,或者它可以模擬使用分布函數(shù)。增資數(shù)量是基于預(yù)測的客戶需求,它的
12、不確定性。補(bǔ)充量模型采用分布函數(shù),通常是正態(tài)分布與某些平均和標(biāo)準(zhǔn)差,代表的不確定性需求預(yù)測。在這項(xiàng)工作中,我們使用的歷史性需求分布數(shù)據(jù)到達(dá)分布函數(shù)。在這里,各種replenishmentpolicies可以模仿指定頻率和規(guī)模的補(bǔ)充。</p><p><b> 3.3推展活動</b></p><p> 作為模擬時(shí)鐘從一天到另一天, 部分已被消耗結(jié)轉(zhuǎn)到前一天。例如,供
13、應(yīng)量第2天將獲得數(shù)量的第1天,和的第3天將是第2天等也,可沒有消費(fèi)的數(shù)量第1天呆在同一天,假設(shè)這是不易變質(zhì)的。滾動著活動中可以產(chǎn)生一個(gè)固定的時(shí)間間隔,如每日,或不同的前滾翻事件還可以模仿的基礎(chǔ)上營商環(huán)境。</p><p><b> 3.4數(shù)據(jù)刷新事件</b></p><p> 在理想的電子商務(wù)環(huán)境,當(dāng)客戶訂購特定產(chǎn)品的被接受,部分組成該產(chǎn)品應(yīng)立即予以保留,并沒有提
14、供為未來的訂單。然而,在現(xiàn)實(shí)中的可用性數(shù)據(jù)無法實(shí)時(shí)更新。其中一個(gè)原因是,一些計(jì)算機(jī)系統(tǒng)都參與了處理和履行客戶訂單,他們的數(shù)據(jù)沒有更新,實(shí)時(shí)同步,因?yàn)樗前嘿F的把它架構(gòu),以確保這樣的數(shù)據(jù)通信和同步。另一個(gè)原因是,在訂單履行任務(wù),其中可能包括調(diào)度,生產(chǎn),銷售和會計(jì)等,需要一些時(shí)間或一般進(jìn)行了作為一個(gè)批處理過程。批處理進(jìn)程執(zhí)行在一定的時(shí)間間隔,并提供數(shù)據(jù)更新只有在履行任務(wù)的完成。之間的差異實(shí)際可用性(動態(tài)可用性)和已知的可用性(靜態(tài)情況而定)
15、船舶造成的準(zhǔn)確日期的計(jì)算方法。在這工作中,該船日期計(jì)算動態(tài)和靜態(tài)鑒于可用性,和不準(zhǔn)確的發(fā)貨日期計(jì)算估計(jì)。不準(zhǔn)確的發(fā)貨日期計(jì)算的一個(gè)重要標(biāo)志客戶服務(wù)水平。數(shù)據(jù)刷新事件可以模仿的固定時(shí)間間隔發(fā)生的事件或隨機(jī)生成事件描述的分布函數(shù)。樣品模擬結(jié)果:船舶日期簡介及其精度。示例船日期的形象作為一個(gè)隨著時(shí)間的推移由于模擬運(yùn)行。在這里,船日期之間波動3天及10天,平均船日期四點(diǎn)四天和標(biāo)準(zhǔn)偏差一點(diǎn)七六天。</p><p><
16、b> 6結(jié)論</b></p><p> 客戶服務(wù)是最重要的成功因素和生存的企業(yè)在今天的動態(tài)的商業(yè)環(huán)境。 能夠估算供應(yīng)前景和預(yù)期客戶服務(wù)的投資是前運(yùn)行企業(yè)是相當(dāng)有利的任何企業(yè)。我們已開發(fā)了一個(gè)仿真模型,估計(jì)該船日期,其中一個(gè)最重要的客戶服務(wù)因素在網(wǎng)上銷售業(yè)務(wù),以及如何送貨的準(zhǔn)確日期。通過模擬各種業(yè)務(wù)情況,分析預(yù)計(jì)發(fā)貨日期統(tǒng)計(jì)和比較,運(yùn)行費(fèi)用的情景,我們能夠作出明智的商業(yè)決定,以促進(jìn)更高的利潤和
17、更好的客戶服務(wù)。仿真建模工作是使用IBM的全身建模( IBM公司)。</p><p> SIMULATING AVAILABILITY OUTLOOK FOR</p><p> E-COMMERCE BUSINESS OF PERSONAL COMPUTER SALES</p><p> Young M. Lee</p><p> I
18、BM T.J. Watson Research Center</p><p> 1101 Kitchawan Road</p><p> Yorktown Heights, NY 10598, U.S.A.</p><p><b> ABSTRACT</b></p><p> For newly designed
19、 or transformed business processes, accuratelypredicting business performances such as costsand customer services before actual deployment is veryimportant. We have successfully developed and used asimulation model for t
20、he IBM’s Personal Computer Divisionby modeling multiple, discrete events such as customerorder arrival, replenishment planning and availabilitydata refresh, and uncertainty of demand forecast, ordersize and customer pref
21、erence of product feature. Using themodel </p><p> 1 INTRODUCTION</p><p> For e-commerce businesses, such as Web-based sales ofcomputers, providing customers the desired lead time toshipment (
22、a number of days for the product to be shippedafter the order is placed) and actually shipping the producton time is a critical factor for success in today’s competitivemarket. The lead time to shipment is determined and
23、provided to customer in multiple times during the customers’e-shopping process. For businesses that are already inoperation, when customers inquire the ship date,</p><p> evaluate its effectiveness. Most of
24、 such usage has been to investigate inventory levels and customer service performance</p><p> based on various manufacturing and distribution scenarios, and policies in inventory, manufacturing, replenishme
25、nt and transportation. McClellan (1992) used simulation to study the effect of MPS method, variability of demand/supplier response on customer services, order cycle and inventory. Hieta (1998) analyzed the effect of alte
26、rnative product structures, alternative inventory and production control methods on inventory and customer service performance. Bagchi et al. (1998) evaluated the desig</p><p> In this work, we describe a s
27、imulation model that estimates availability outlook, e.g., expected ship dates and their accuracy of an e-commerce business where end products are configured from different components by customers. This model simulates t
28、he effect of stochastic customer shopping traffic; uncertainty of order size, customer preferences of product features and demand forecast; inventory</p><p> policies, sourcing policies and supply planning
29、policies; manufacturing lead time etc. on the profiles of ship dates. The simulation model provides important statistical information of availability outlook and customer services before the business is put into operatio
30、n so that intelligent business decisions are made before investment is made. The model also estimates the accuracy of the ship dates determination</p><p> arising from frequency of data communications betwe
31、en the computer systems supporting the on-line business. For multiple quantity orders, the simulation model also computes ship dates for partial shipments, if it is optional, and the total shipment. </p><p>
32、 2 MODELING OF COMPONENT AVAILABILITY</p><p> The availability quantities of components are used in computing the ship date of customer requests and orders. The availability quantity changes as a result of
33、 four discrete events in the simulation. It changes as customer order is released, as replenishment is done, as data refresh is done, and as roll forward is carried. There are two instances of component availability arra
34、ys; one representing the availability at real time (dynamic view of availability), and another representing known availab</p><p> 3.1 Order Generation Event</p><p> Customer orders are generat
35、ed in the invention in certain stochastic interval as they are modeled with certain distribution functions. At this time of the order generation, each order is assigned with one or more line items, and each line item is
36、assigned with one or more quantities. This assignment of attributes to each order is modeled with probability distribution functions based on historic sales data or expected business in the future. The orders travel thro
37、ugh the business process as defin</p><p> 4.2 Replenishment Event </p><p> As building block components are consumed as products are sold to customers, additional components are acquired throu
38、gh planning of supply. This activity, typically known as supply planning, occurs in advance, e.g., months, weeks or days before the components are actually needed, to accommodate the supply lead time. The frequency of su
39、pply planning can also be months, weeks or days. As a result of the supply planning, the component availability is replenished</p><p> in certain frequency and quantity. The replenishment frequency can be a
40、 fixed interval such as daily, weekly etc, or it can be modeled using a distribution function. The replenishment quantity is based on the forecast of customer demand, which has uncertainty. The replenishment quantity is
41、modeled using a distribution function, typically a normal distribution with certain mean and standard deviation, which represent the uncertainty of demand forecast. In this work, we use the historic demand dis</p>
42、<p> 3.2 Replenishment Event</p><p> As building block components are consumed as products are sold to customers, additional components are acquired through planning of supply. This activity, typical
43、ly known as supply planning, occurs in advance, e.g., months, weeks or days before the components are actually needed, to accommodate the supply lead time. The frequency of supply planning can also be months, weeks or da
44、ys. As a result of the supply planning, the component availability is replenished in certain frequency and quantity. T</p><p> 3.3 Roll Forward Event</p><p> As simulation clock moves from a d
45、ay to another day, the component that has not been consumed are carried forward to a day earlier. For example, the availability quantity for the 2nd day will be the availability quantity of 1st day, and that of 3rd day w
46、ill be that of 2nd day etc. Also, the availability quantity not consumed on the 1st day stayed on the same day, assuming it is non-perishable. The roll forward event can be generated in a fixed interval, e.g., daily, or
47、different roll forward eve</p><p> 3.4 Data Refresh Event</p><p> In ideal e-business environment, when a customer order for a specific product is accepted, the components that constitute the
48、product should immediately be reserved and not available for future orders. However, in reality the availability data are not updated in real time. One of the reasons is that</p><p> several computer system
49、s are involved in processing and fulfilling customer orders, aand their data are not updated and synchronized in real time because it is expensive to have IT architecture that ensures such data communication and synchron
50、ization. Another reason is that the order fulfillment tasks, which may include scheduling, production, distribution and accounting etc., takes some time or are typically carried out as a batch process. The batch process
51、is executed in certain time intervals</p><p><b> 6 SUMMARY</b></p><p> Customer service is one of most important factors of success and survival of enterprises in today’s dynamic b
52、usiness environment. Being able to estimate availability outlook and expected customer services before investment is made to run the business is quite beneficial to any enterprises. We have developed a simulation model t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子商務(wù)時(shí)代電腦銷售渠道策略研究——兼論實(shí)達(dá)電腦銷售渠道e化策略.pdf
- 個(gè)人電腦費(fèi)用補(bǔ)貼制度
- 個(gè)人電腦故障總結(jié)大全
- 愛折騰的“個(gè)人電腦之父”
- 個(gè)人電腦配置撥號連接圖片
- 2018電腦銷售合同
- 聯(lián)想電腦銷售案例
- 電腦銷售供貨合同
- 電腦銷售合同模板
- 電腦銷售合同模板
- 案例戴爾的網(wǎng)絡(luò)個(gè)人電腦失敗
- 個(gè)人電腦的安全風(fēng)險(xiǎn)及對策
- 電腦、軟件行業(yè)電子商務(wù)拓展指南
- 個(gè)人電腦市場的產(chǎn)業(yè)格局研究——以聯(lián)想收購IBM個(gè)人電腦業(yè)務(wù)為研究背景.pdf
- 電腦銷售畢業(yè)論文
- 電腦銷售實(shí)習(xí)報(bào)告范文
- 外文翻譯----視頻會議通過tcp ip協(xié)議在個(gè)人電腦上的實(shí)現(xiàn)
- 外文翻譯----視頻會議通過tcp ip協(xié)議在個(gè)人電腦上的實(shí)現(xiàn)
- 電腦銷售計(jì)劃書
- 電腦銷售暑期實(shí)踐報(bào)告
評論
0/150
提交評論