2023年全國(guó)碩士研究生考試考研英語(yǔ)一試題真題(含答案詳解+作文范文)_第1頁(yè)
已閱讀1頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  畢業(yè)設(shè)計(jì)/論文</b></p><p>  外 文 文 獻(xiàn) 翻 譯</p><p>  系  別 機(jī)電與自動(dòng)化學(xué)院 </p><p>  專 業(yè) 班 級(jí) 電氣0703 </p><p>  姓  名

2、 </p><p>  評(píng)  分 </p><p>  指 導(dǎo) 教 師 </p><p>  2011 年 1 月 20日</p><p>  畢業(yè)設(shè)計(jì)/論文外文文獻(xiàn)翻譯要求:</p><p>  1.外文文獻(xiàn)翻譯的內(nèi)容

3、應(yīng)與畢業(yè)設(shè)計(jì)/論文課題相關(guān)。</p><p>  2.外文文獻(xiàn)翻譯的字?jǐn)?shù):非英語(yǔ)專業(yè)學(xué)生應(yīng)完成與畢業(yè)設(shè)計(jì)/論文課題內(nèi)容相關(guān)的不少于2000漢字的外文文獻(xiàn)翻譯任務(wù)(其中,漢語(yǔ)言文學(xué)專業(yè)、藝術(shù)類專業(yè)不作要求),英語(yǔ)專業(yè)學(xué)生應(yīng)完成不少于2000漢字的二外文獻(xiàn)翻譯任務(wù)。格式按《華中科技大學(xué)武昌分校本科畢業(yè)設(shè)計(jì)/論文撰寫規(guī)范》的要求撰寫。</p><p>  3.外文文獻(xiàn)翻譯附于開題報(bào)告之后:第一部

4、分為譯文,第二部分為外文文獻(xiàn)原文,譯文與原文均需單獨(dú)編制頁(yè)碼(底端居中)并注明出處。本附件為封面,封面上不得出現(xiàn)頁(yè)碼。</p><p>  4.外文文獻(xiàn)翻譯原文由指導(dǎo)教師指定,同一指導(dǎo)教師指導(dǎo)的學(xué)生不得選用相同的外文原文。</p><p>  2008年國(guó)際計(jì)算機(jī)、電子工程會(huì)議</p><p>  基于智能PID調(diào)節(jié)的連續(xù)燒結(jié)爐溫度控制系統(tǒng)</p>&

5、lt;p>  曹樹坤,張亞蘭,張亨</p><p> ?。?jì)南大學(xué)機(jī)械工程學(xué)院·中國(guó)濟(jì)南)</p><p>  摘要:為滿足在多個(gè)爐床的連續(xù)燒結(jié)爐精確溫度控制精度的要求,該系統(tǒng)是由電腦XMT624和對(duì)溫度場(chǎng)控制的固態(tài)繼電器組成。根據(jù)燒結(jié)爐加熱過程中的溫度慣性、時(shí)滯的特點(diǎn),采用智能PID算法來實(shí)現(xiàn)大范圍溫度調(diào)節(jié),克服了傳統(tǒng)PID控制的局限。通過在線實(shí)時(shí)設(shè)置智能指令單元, 該系

6、統(tǒng)可以達(dá)到2‰的溫度控制精度目標(biāo)。</p><p><b>  關(guān)鍵詞:</b></p><p><b>  1 引言</b></p><p>  連續(xù)燒結(jié)爐是一種常用的為金屬粉末注射塑料件加熱設(shè)備,它包含了脫脂和調(diào)試的過程。在粗糙的部分通過脫脂爐后,然后通過一個(gè)封閉的輸送帶進(jìn)入水平連續(xù)燒結(jié)爐。脫脂爐和燒結(jié)爐由兩臺(tái)爐子門分

7、隔。其主要部分被分為加熱、燒結(jié)、冷卻三部分。連續(xù)燒結(jié)爐的燒結(jié)質(zhì)量取決于溫度的均勻性和燒結(jié)過程的穩(wěn)定性,<~連續(xù)燒結(jié)爐的溫度控制系統(tǒng)是一個(gè)大時(shí)滯、非穩(wěn)定、非線性復(fù)雜系統(tǒng),燒結(jié)溫度也受到外部因素的影響,如爐門開關(guān)、燃?xì)饬髁?。因?使用傳統(tǒng)的控制方法不能滿足連續(xù)燒結(jié)爐溫度控制要求[1-2]。</p><p>  在邏輯控制系統(tǒng)中,PID控制是最成熟,應(yīng)用最廣泛的技術(shù)[3-4]。但該算法在燒結(jié)爐溫度控制系統(tǒng)中具有一

8、定的局限性,該燒結(jié)爐溫度控制系統(tǒng)具有大慣性、純延遲, 非線性、時(shí)變特性,以及由此帶來的折射出爐子過度控制和動(dòng)態(tài)性能不穩(wěn)定。例如,單向自然的加熱歸于燒結(jié)爐使用燈絲電阻、冷卻依賴的是自然環(huán)境,如果溫度很高,它是很困難迅速冷卻。</p><p>  同時(shí),建立精確的數(shù)學(xué)模型和方法,及確定該模型的參數(shù)是困難的,這也無(wú)法有效的控制溫度。計(jì)算機(jī)電腦和智能控制理論的發(fā)展為復(fù)雜控制方法和動(dòng)態(tài)不確定度系統(tǒng)控制提供了一種新方法。采用

9、智能控制技術(shù)提升智能PID控制。</p><p><b>  2 控制系統(tǒng)框架</b></p><p>  多段連續(xù)燒結(jié)爐溫度控制系統(tǒng)主要由PC和XMT624智能儀器組成,其執(zhí)行機(jī)構(gòu)是固態(tài)繼電器。爐子被分為三段去控制溫度,這意味著每段有三個(gè)溫度點(diǎn)。連續(xù)燒結(jié)爐溫度控制框架如圖1。</p><p>  針對(duì)燒結(jié)爐的每個(gè)溫度段和每個(gè)溫度點(diǎn)僅僅采用智能

10、PID控制。根據(jù)設(shè)定值和閱讀測(cè)量值,XMT624計(jì)算溫度誤差,然后智能PID控制器控制固態(tài)繼電器error-off時(shí)間來控制熔爐溫度和設(shè)定值的穩(wěn)定。</p><p><b>  3 控制算法</b></p><p>  智能PID控制算法[5 - 6]是基于常規(guī)PID控制的控制算法,這種算法對(duì)對(duì)象具有延遲,時(shí)變和非線性系統(tǒng)的特點(diǎn)和在不同環(huán)節(jié)有不同的算法。它有棒-棒快速

11、控制,延遲控制,穩(wěn)定性控制和抗干擾的能力。</p><p>  由于智能PID控制算法不依賴數(shù)學(xué)模型和對(duì)參數(shù)變化不敏感,所以這種算法更適合現(xiàn)場(chǎng)使用。</p><p>  3.1 PID算法實(shí)現(xiàn)的數(shù)字</p><p>  在模擬系統(tǒng),表示PID算法表達(dá)式是:</p><p><b> ?。?)</b></p>

12、<p>  離散方程(1)、數(shù)字形式的微分方程代替連續(xù)系統(tǒng)微分方程,則微積分能使用求和及增量形式表示:</p><p><b> ?。?)</b></p><p><b> ?。?)</b></p><p>  在遞歸原則下用K表示PID輸出的表達(dá)式: (4)</p><p>  所以在

13、方程(4)中,=/T 是積分系數(shù), =/T 是微分系數(shù)。PID的微分方程可以表示為: (5) </p><p>  在方程(5)中,是控制量,是偏差,是比例系數(shù),是積分系數(shù),是微分控制系數(shù)。</p><p>  一旦系統(tǒng)產(chǎn)生錯(cuò)誤,PID控制器立即工作以使目標(biāo)減少錯(cuò)誤,控制功能的強(qiáng)大和微弱取決于比例

14、系數(shù),它的限制是對(duì)于有自我平衡能力的控制對(duì)象存在靜態(tài)錯(cuò)誤。增長(zhǎng)的值可以減少靜態(tài)錯(cuò)誤,但是過大的值會(huì)導(dǎo)致系統(tǒng)動(dòng)態(tài)性能變差。</p><p>  積分記憶誤差幫助系統(tǒng)減少靜態(tài)錯(cuò)誤,但是積分環(huán)節(jié)的限制是使控制系統(tǒng)有一個(gè)滯后的特性。如果積分環(huán)節(jié)太強(qiáng)大,它將使控制對(duì)象的動(dòng)態(tài)性能變得很差,導(dǎo)致閉環(huán)系統(tǒng)不穩(wěn)定。微分誤差能獲得誤差變化趨勢(shì),增長(zhǎng)微分控制因素可以加快系統(tǒng)響應(yīng),但是它對(duì)干擾敏感和降低系統(tǒng)抗干擾的能力。</p&g

15、t;<p>  圖1 連續(xù)燒結(jié)爐溫度控制系統(tǒng)的框圖</p><p>  3.2 智能PID控制環(huán)節(jié)</p><p>  由于僅當(dāng)系統(tǒng)模型參數(shù)不變性時(shí),PID算法可以得到預(yù)想效果,當(dāng)一個(gè)好的PID控制器應(yīng)用在模型參數(shù)隨時(shí)間變化的系統(tǒng)時(shí),它的能力會(huì)變得不同,這個(gè)不同在于參數(shù)要好好調(diào)整,甚至不穩(wěn)定。所以智能PID控制器參數(shù)能僅僅根據(jù)現(xiàn)實(shí)情況通過許多次計(jì)算獲得。一個(gè)系統(tǒng)考慮到最大偏差

16、,最小偏差,如此系統(tǒng)PID控制規(guī)則如下:</p><p>  規(guī)則1:IF︱︳> THEN</p><p><b>  = (k);</b></p><p>  規(guī)則1能確保:測(cè)量值小于溫度設(shè)定值時(shí),迅速下降。</p><p>  規(guī)則2:IF ︱︳< THEN</p><p>&

17、lt;b>  =;</b></p><p>  為減少頻繁的運(yùn)動(dòng)和不影響溫度控制的精確性,規(guī)則2為溫度偏差設(shè)置了一個(gè)死區(qū)。</p><p>  規(guī)則3:IF<︱︳< THEN</p><p><b>  =+ [-]+;</b></p><p>  規(guī)則3不使用微分控制,根據(jù)現(xiàn)場(chǎng)控制情況去

18、調(diào)整和。</p><p>  4 設(shè)置在線PID參數(shù)</p><p>  XMT624通信接口是以光電耦合輸出隔離為主,以異步RS485為次,一般PC機(jī)僅有RS232接口,RS232和RS485接口電氣特性是不兼容的,所以要使用RS232/RS485轉(zhuǎn)換器ZW485C以使RS232信號(hào)變?yōu)镽S485信號(hào)。該系統(tǒng)工作在半雙工模式下,基于當(dāng)前狀態(tài)的PC機(jī)發(fā)送命令去讀取XMT624檢測(cè)到的信號(hào)和

19、為設(shè)定參數(shù)發(fā)送一個(gè)命令給XMT624。在響應(yīng)后,XMT624立即接受命令并在儀表板顯示當(dāng)前工作狀態(tài)。</p><p>  溫度控制器件與PC機(jī)的通訊是:通訊速度9600bps;停止位:1;數(shù)據(jù)位:8;校驗(yàn)位:無(wú)。XMT624定義輸入,輸出,狀態(tài)參數(shù)和指定地址。主要參數(shù)如表1:</p><p><b>  表1 主要參數(shù)</b></p><p>

20、  PID控制器的三個(gè)基本參數(shù)能通過PC端口在通訊地址中被直接讀取和寫,所以它的控制很方便。當(dāng)讀和寫參數(shù)時(shí),首先,我們應(yīng)知道參數(shù)的代碼。讀參數(shù)的代碼是03H,寫參數(shù)的代碼是10H。例如,讀測(cè)定值PV,被主機(jī)傳送的數(shù)據(jù)格式顯示在表2:</p><p>  表2 傳送數(shù)據(jù)的主要格式</p><p>  在數(shù)據(jù)格式中的第一個(gè)地址是XMT624的地址。第二個(gè)地址是PV的EMS的存儲(chǔ)地址。如果它讀取

21、比例因子P,那么它改變第二個(gè)地址為內(nèi)存地址1004H就可以了。讀和寫參數(shù)的數(shù)據(jù)格式是相似的。它需要將功能代碼改變?yōu)閷憛?shù)的功能代碼10H.</p><p>  PID三個(gè)基本參數(shù)是相互聯(lián)系和相互約束的,由物理環(huán)境因素所限制。所以它應(yīng)該在物質(zhì)情況和控制要求中進(jìn)行折衷的選擇。在實(shí)際運(yùn)用中一些實(shí)例可按照如下調(diào)整:</p><p>  溫度非??斓倪_(dá)到目標(biāo)溫度,但溫度的超調(diào)是巨大時(shí):考慮減少比例系

22、 數(shù)或增加微分系數(shù)時(shí)間。</p><p>  溫度常常達(dá)不到目標(biāo)和所需時(shí)間非常長(zhǎng)時(shí):考慮增加比例系數(shù)或積分時(shí)間。</p><p>  它可以在基本控制目標(biāo)內(nèi)波動(dòng),但是偏差是很大的,通常是無(wú)規(guī)律時(shí):考慮增加微分系數(shù)或減少積分時(shí)間,工作周期可能被設(shè)置的更短。</p><p>  它被周圍環(huán)境和氣候變化劇烈影響。很小的變化將引起在溫度波動(dòng)的一些變化時(shí):考慮增加微分系數(shù)或縮

23、短周期。</p><p><b>  5 總結(jié)</b></p><p>  隨著智能控制原理的發(fā)展,PID控制技術(shù)已越來越成熟,智能PID算法是非線性的,這種非線性能被用來克服傳統(tǒng)PID的限制。規(guī)則1和2能使系統(tǒng)快而穩(wěn)定,規(guī)則3能使PID有適應(yīng)參數(shù)變化的能力。它實(shí)現(xiàn)了通過編程在線設(shè)定PID參數(shù)和提高系統(tǒng)控制的精度。伴隨著智能PID控制, P,I,D的設(shè)置能直接影響PI

24、D控制的結(jié)果,如此這些參數(shù)與控制系統(tǒng)本身有了緊密的聯(lián)系。所以給定一個(gè)能適應(yīng)任何系統(tǒng)的固定值是非常困難的。因此,根據(jù)實(shí)際情況,智能PID算法的使用必須在現(xiàn)場(chǎng)調(diào)試和找到一組適應(yīng)系統(tǒng)本身的控制參數(shù)。</p><p><b>  6 感謝</b></p><p>  這篇文章得到山東省青年科學(xué)家鼓勵(lì)基金(項(xiàng)目號(hào):No.2005BS05007),山東自然科學(xué)基金(項(xiàng)目號(hào):No.

25、Y2006F0),山東省重點(diǎn)學(xué)科(實(shí)驗(yàn))研究基金的支持。</p><p><b>  7 參考文獻(xiàn)</b></p><p>  Mercedes Ramirez, Rodolfo Haber, Victor Penab, and Ivan Rodriguez, “多個(gè)燒結(jié)爐的模糊控制”,工業(yè)控制計(jì)算機(jī),第54期,第105-113頁(yè),2003</p>&l

26、t;p>  Perttu Laurinen, Juha Roning,“自適應(yīng)網(wǎng)絡(luò)模型來預(yù)測(cè)在加熱爐中鋼板的粗磨溫度”,材料加工工藝期刊,第168期,第423-430頁(yè),2005</p><p>  Elena Grassi, Kostas Tsakalis,“通過頻率環(huán)路整形的調(diào)諧PID控制器:應(yīng)用到擴(kuò)散爐溫度控制”,電氣與電子工程師協(xié)會(huì)技術(shù)學(xué)報(bào),第8卷,第5輯,第42—847頁(yè),2000 </p&

27、gt;<p>  涂乃偉, 華福, 嚴(yán)欣,“自調(diào)整參數(shù)模糊PID控制器在溫度控制系統(tǒng)中的應(yīng)用”,控制與自動(dòng)化學(xué),第20卷,第6輯,第8-20頁(yè),中國(guó),2004</p><p>  蔡建峰,“智能儀表在加熱爐控制系統(tǒng)中的應(yīng)用”,工業(yè)加熱設(shè)備協(xié)會(huì),第5期,第31-34頁(yè),中國(guó),2001</p><p>  王海舟,“YS-170智能控制器在溫度控制中的應(yīng)用”,江西電力職工大學(xué)學(xué)報(bào)

28、,第16卷,第3輯,第19-24頁(yè),2003 </p><p>  2008 International Conference on Computer and Electrical Engineering</p><p>  Continuously Sintering Furnace Temperature Control System Based on</p><p

29、>  Intelligent PID Adjustment</p><p>  Shukun Cao, Lei Shi, Xiangbo Ze, Heng Zhang</p><p>  School of Mechanical Engineering,􀀃University of Jinan, Jinan, P. R. China</p><p

30、>  caoshukun@126.com; leishi@163.com; me_zexb@ujn.edu.cn; hengzhang@163.com</p><p><b>  Abstract</b></p><p>  To meet the demands of temperature control accuracy in continuously s

31、intering furnace with multiple hearths, this system was constituted with PC, XMT624 and solid state relay for temperature field control. According to the characteristics of heating process, temperature inertia, lag of si

32、ntering furnace, adopted intelligent PID algorithm to achieve the large-scale temperature adjustments, it overcomes the limitation of traditional PID control. Through online setting intelligent instrument unit r</p>

33、;<p>  1. Introduction</p><p>  Continuous sintering furnace is a commonly used heating equipment for metal powder injection molding parts, it combines degrease and sintering processes. After rough pa

34、rts track the degrease furnace, and then taken into horizontal continuous sintering furnace through an enclosed conveyor belt. The degrease furnace and sintering furnace are separated by two furnace doors. The main part

35、of which is divided into heating, sintering and cooling. The sintering quality of continuous sintering furnace d</p><p>  It is difficult to establish precise mathematical method and determine the model para

36、meters, and unable to control the temperature effectively. Computers and the development of intelligent control theory provide a new approach for the complex control and dynamic uncertainty systems. Using intelligent con

37、trol technology promotes intelligent PID control.</p><p>  2. Control system frame</p><p>  The temperature control system of multi-segment continuous sintering furnace is mainly consisted of PC

38、 and XMT624 intelligent instrument, the executing agency is solid-state relay. The furnace is divided into three segments to control temperature, which means that each segment of the furnace has three temperature points.

39、 The frame of temperature control of the continuous sintering furnace is shown as figure 1.</p><p>  In allusion to every temperature section and every temperature point of the sintering furnace, adopt intel

40、ligent PID control solely. XMT624 according to the setting value and the reading measurement value calculates temperature deviations, and then intelligent PID controller controls solid state relay error-off time to contr

41、ol furnace temperature and stability in the setting value.</p><p>  3. Control algorithm</p><p>  Intelligent PID control algorithm [5-6] is the control algorithm base on conventional PID contro

42、l algorithm for the object that has characteristic of delay, time-varying and nonlinear systems, and in different segments has different algorithm. It has both Bang-Bang fast control and the lag control stability control

43、 and anti-jamming capability.</p><p>  As intelligent PID control algorithm is not dependent on the mathematical model, and is not sensitive to changes in parameters, therefore is more suitable for field use

44、.</p><p>  3.1. PID algorithm to achieve the figures</p><p>  In the analog system, the expression of PID algorithm is:</p><p><b> ?。?) </b></p><p>  Disc

45、rete equation (1), digital form of differential equations instead of the continuous system differential equations, differential and integral can be expressed using sum and incremental form: </p><p><b>

46、 ?。?)</b></p><p><b>  (3)</b></p><p>  Under the principle of recursion may write PID output expression with k:</p><p><b> ?。?)</b></p><p>

47、;  In the equation (4), =/T is integral coefficient, =/T d is differential coefficient. So the differential equation of PID can be expressed:</p><p><b>  (5)</b></p><p>  In the equ

48、ation (5), is control value, is deviation, is proportion factor, is integration control factor, is differential control factor.</p><p>  Once the system generates error, PID controller immediately works to

49、 make the object reduce errors, the strength and feebleness of control function depend on proportion factor , and its limitation is existing static error for control objects with self-balancing ability. Increasing value

50、can reduces static errors, but the big value has led to the dynamic performance of the system weaker.</p><p>  Integral memory error helps the system eliminate static errors, but the limitation of integral r

51、ole is that makes a control system have lag characteristics. If the integral role is too strong, it would make dynamic quality of the object weaker and lead to the closed-loop system instability. The differential error c

52、an get the trend of error change, and increasing differential control factoraccelerate the system response, but it will be sensitive to interference, and reducing the anti-jamming abil</p><p>  3.2. Intellig

53、ent PID control rules</p><p>  Because the PID algorithm gets the desired effect only when the system model parameters are non-denaturing, when a okay PID controller is applied in the model parameters time-c

54、hanging system, its capability can become difference which parameters are adjusted well, and even instability. Therefore, the intelligent PID controller parameters can only be got by many times calculation according to t

55、he fact</p><p>  situation. A system allows for the maximum deviation , minimum deviation , so the PID control rules of system as follow:</p><p><b>  Rule 1:</b></p><p>

56、  IF︱︳> THEN</p><p><b>  = (k);</b></p><p>  The rule 1 can guarantee that a measured value is less than the temperature setting value, rapidly fall.</p><p><b&g

57、t;  Rule 2: </b></p><p>  IF ︱︳< THEN</p><p><b>  =;</b></p><p>  To eliminate the frequent motion and not affect precision temperature control, the rule 2 set

58、a dead zone for temperature deviations. </p><p><b>  Rule 3:</b></p><p>  IF<︱︳< THEN</p><p><b>  =+ [-]+;</b></p><p>  Rule 3 does not u

59、se differential controls, and according the scene control situation to adjust and.</p><p>  4. Setting of PID on-line parameters</p><p>  The communications interface of XMT624 instrument is opt

60、oelectronic output isolation principal and subordinate asynchronous RS485, and general PC only has RS232 interface, RS232 and RS485 interface electrical characteristics are incompatible with each other, so using RS232 /R

61、S485 converter ZW485C, to change RS232 signal into RS485 signal. The system works in half-duplex mode, the PC based on the current state sends orders in order to read the signal that XMT624 instrument detected, and sends

62、 an </p><p>  With the development of intelligent control theory, PID control technology is more and more mature. The intelligent PID algorithm is nonlinear, which can be used to conquer the limitation of th

63、e traditional PID. The rule 1 and rule 2 can make the system fast.</p><p>  Three basic parameters of the PID controller can be directly read and wrote in the corresponding address through the PC interface,

64、so it is controlled expediently. When read and write parameters, firstly, we should know the parameters’ code. The reading parameters’ code is 03 and the writing parameters code is 10H. For example, reading measurements

65、PV, the data format sent by the main frame is shown as Table 2:</p><p>  The first address in the data format is the XMT624’s address. The second address is the PV’s EMS memory address. If it reads the ratio

66、 factor P, it changes the second address to EMS memory address</p><p>  1004H is OK. The reading and writing parameters’ data format is similar. And it needs to change the functional code to the writing para

67、meters’ functional code 10H.</p><p>  Three basic parameters of PID are interaction and mutual constraints and are restricted by the physical environmental factors. So it should decide the eclectic choice be

68、tween the material circs and control requires. Some instance in actual use can be adjusted as follows:</p><p>  (1) The temperature reaches target very quickly, but the temperature overshoot is great: consid

69、er reducing proportions coefficients or increasing differential coefficient time.</p><p>  (2) The temperature often fails to the target and the time is great: consider increasing the proportions coefficient

70、s or integral time.</p><p>  (3) It can fluctuate at the basic control goals, but deviation is oversize, and it is often volatile: consider increasing differential coefficient or reducing integral time, and

71、the work cycle may be set shorter.</p><p>  (4) It is affected greatly by the surrounding environment or the weather changes. Little change will cause some changes in the temperature fluctuations: consider i

72、ncrease differential coefficient or shorten the cycle time.</p><p>  5. Conclusions</p><p>  With the development of intelligent control theory, PID control technology is more and more mature. T

73、he intelligent PID algorithm is nonlinear, which can be used to conquer the limitation of the traditional PID. The rule 1 and rule 2 can make the system fast and stability, and the rule 3 makes the PID adaptive capabilit

74、y with the variable parameters. It realizes the parameters of PID setting on-line through programming, and increases system control accuracy. With intelligent PID control, the res</p><p>  6. Acknowledgement

75、</p><p>  This paper is supported by Young Scientist Encouragement Foundation of Shandong Province(Project No.2005BS05007), Shandong Provincial Natural Science Foundation (Project No.Y2006F01),and Key Subjec

76、t(Laboratory) Research Foundation of Shandong Province.</p><p>  7. References</p><p>  [1] Mercedes Ramirez, Rodolfo Haber, Victor Penab, and Ivan Rodriguez, “Fuzzy control of a multiple hearth

77、 furnace”, Computers in Industry, 2003, No. 54, pp. 105-113.</p><p>  [2] Perttu Laurinen, Juha Roning, “An adaptive neural network model for predicting the post roughing mill temperature of steel slabs in t

78、he reheating furnace”, Journal of Materials Processing Technology, 2005, No. 168, pp.423–430.</p><p>  [3] Elena Grassi, Kostas Tsakalis, “PID controller tuning by frequency loop-shaping: Application to diff

79、usion furnace temperature control”, IEEE Transactions on Control Systems Technology, 2000, Vol. 8, No. 5, pp. 42-847.</p><p>  [4] Nai-wei Tu, Hua Fu, and Xin Yan, “Parameter selftuning fuzzy PID controller’

80、s application in temperature control system”, control & automation, 2004, Vol. 20, No.6, pp. 8-20 (in Chinese).</p><p>  [5] Jian-feng Cai, “Application of Intelligent instrument in control system of hea

81、ting furnace”, Industrial Heating, 2001, No. 5, pp. 31-34 (in Chinese).</p><p>  [6] Hai-zhou Wang, “Application of YS-170 intelligent controller in the temperature control”, Journal of Jiangxi Electrical Un

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論