版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 中文2450字</b></p><p> 作者:Chunhui Yang Shimin Luo</p><p><b> 國籍:China</b></p><p> 出處:2010 Intemational Conference on System,Engineering Drdign
2、 and Manufacturing Informatization</p><p> Circular are flexible hinge stiffness character analysis</p><p> Abstract-Flexible hinges are widely used in micro robotic. Its tigidity directly inf
3、luences an organization’s terminal localization. Its actual structure geometry size cannot satisfy the theoretical analysis completely in a theoretical supposition condition. In this paper. We analayzed the rotation rigi
4、dity of a ellliptical flexible hinge in different parameters using finite element software ANSYS. The errors are discovered and compared with theoretical result. Though the graph of the flexible h</p><p> K
5、eywords-flexible hinge; elllipse; finite element analysisl;rigidity</p><p> ?、?INTRODUCTION</p><p> Flexible hinge have some characteristics, such as small volume, without tubs, ceaseless, good
6、 rigidity and high sensitivity. With micocomputer electrical system series (MEMS) technical rapidly expanding, flexible hinge are widely applied in the displacement which requests small angular and high-precision rotatio
7、n, such as gyroscopes,accelerometers, percision instruments and so on. It has broad application prospects in the micron level domain.</p><p> The common flexible hinge is in two kinds:beam-shape flexible hi
8、nge and arc-shaped flexible hinge. The beam-shaped flexible hinge has a big slewing area, but the movement precision is bad. The arc-shaped flexible hinge’s movement percision is bad. The arc-shaped flexible hinge is rel
9、atively small. In order to take into account the movement ptecision and scope, the following several rotation flexible hinges have been generated: parabolic flexure hinge, an elliptical flexure hinge and a hyperbola-<
10、/p><p> In this paper the elliptical flexible hinge stiffness to different geometrical parameters is analyzed with software ANSYs10.0. Compared with ressults of theoretical analysis and finite element analysis
11、(FEA), the errors are analyzed. Theough the graph of the flexible hinge parameters and its performanve, an analysis of changes of parameters on the performance of the elliptical fexible hinge was carried out. The key man
12、ufacture parameters that affect the performances of an elliptical flexible hing</p><p> ?、?RIGIDITY FORMULA OF THE ELLIPTICAL FLEXIBLE HINGE </p><p> An elliptical flexible hing,as shown in Fig
13、ure 1, is a particular type of flexure that consists of a neckde down section. Parameters t,h,b are flexible hinge’s smallest thickness,height and width ,resoectively, Parameter is the semimajor axis of ellipse, and is
14、the semimajor axis of elllipse.</p><p> As shown in Figure 1(a), the infinitesimal is intercepted in the abscissa axis. To begin, the infinitesimal section is vertical to the abscissa axis. The flexible hin
15、ge’s angular deformation is generated under torque as given in Equation(1).</p><p><b> ?。?)</b></p><p><b> ?。?)</b></p><p><b> Where</b></p
16、><p> The rotation rigidity fotmula is given by Euation(3)</p><p><b> (3)</b></p><p> When , the flexible hinge is the circular flexible hinge. Its rotantion rigidity fo
17、rmula is given by Equatuin(4)</p><p><b> (4)</b></p><p> The rorarion rigidity formula of circular flexible hinge is consistent with the reference[2].</p><p><b>
18、 (a)</b></p><p><b> (b)</b></p><p> Figure 1 Model of elliptical flexible hinge </p><p> Ⅲ. FEA MODEL OF ELLIPTOCAL FLEXIBLE HINGE </p><p> Ansy
19、s has some characteristics that the general finite element analysis technologt, powerful computing, and reliable result. The elliptical flexible hinge’s basic srtuture size is . The materical is bertllium copper alloy, ,
20、. The FEA model is shown in Figure2(a). The model left end surface is restrained completely, the right end surface exerts bending moment . The special node 1 of the grid model right end surface represents the output disp
21、lacement. The unit type chooses 3_D the entity SOLID92 u</p><p><b> (a)</b></p><p><b> (b)</b></p><p> Figure 2 . FEA model of elliptical flexure hinge<
22、;/p><p> The theoretical calculation and FEA rotational stiffness are obtaoned through changing elliptical flexure hinge’s parameters E,b,t and as well as , as shown in Figure 3 to 7.</p><p> Fig
23、ure 3. Comparison of FEA value and the theoretical value of flexure hinge with changing E</p><p> Figure 3. Comparison of FEA value and the theoretical value of flexure hinge with changing width b</p>
24、<p> Figure 5. Comparison of FEA value and the theoretical value of flexure hinge with chinging thickness t</p><p> Figure 6. Comparison of FEA value and the theoretical value of flexure hinge with
25、chinging semimajor axis </p><p> Figure 7. Comparison of FEA value and the theoretical value of flexure hinge with chinging semimajor axis </p><p> From Equation (3) and Figures 3 to 7 the fol
26、lowing conclusions can be observed.</p><p> From Figures 3and 4 it can be observed that the rotation stiffness is a linearly increasing realtion with material young’s modulus E and width b. The FEA value is
27、 bigger than the theoretical value. When E and b are smallerm the FEA value and the theoretical value are closer .</p><p> From Figure 5 it can observed that the rotantion of the stiffness FEA value and the
28、 theoretical value is a vurve increasing with thickness t, end the speed-up is getting quicker and quicker. When t is bigger, the difference of the theoretical value and the FEA value is bigger. When t<2mm, the FEA va
29、lue and the theorerical value are close.</p><p> From Figure 6 it can observed that the rotantion of rotation rigidity and semimajor axis is a decreasing curve, and the rate of reduced scope is gradually de
30、creased. When >3mm, the FEA value and the theoretical value are closer.</p><p> From Figure 7 it can observed that the rotantion of rotation ridity and semiminor axis is a linearly increasing, but the i
31、ncreasing scope is small. The FEA value is bigger than the theoretical value.</p><p> From Figure 3 to 7 it can observed that the influence of flexure hinge’s parameter to its rotation stiffness is:the infl
32、uence of thickness t is biggest, followed by semimajor axis , semimajor axis width b and E.</p><p> The theoretical value and the FEA value of an elliptical flexible hinge rotation rigidity is not equal, ev
33、en if has a big differential value. The reasons are:</p><p> The flexible hinge theoretical model that is eastablished using materials mechanics’ bending strain theory is built on the basis of certain assum
34、ptions.</p><p> From Figure 2(b) it can be observed that the FEA model not only has the displancement in the y axis direction, but also has the displacement change on the z axis direcrion, when the torque
35、exerted on the z axis for the model. In other words, the flexible hinge not only has the bending strain,but also will have the shearing force to cause upward deformation. Under certain design parameters, the flexible hin
36、ge’s theory and FEA solution achieve a good match.</p><p> ?、?CONCLUSIONS</p><p> The different design parameters to the flexible hinge rotation rigidity influence and the linear relationship a
37、re obtained by comparing the rotation rigidity theory solution stiffness is:the influence of thickness is biggest,followed by semimajor axis R,width b and E. The teasons that the theoretical value and the FEA value of an
38、 elliptical fexible hinge not only has the bending strain,but also will have the shearing force to cause upward deformation. It is helpful to further analyze the movemen</p><p> 圓弧型柔性鉸鏈剛度特性分析</p><
39、;p> 摘 要: 柔性鉸鏈是目前被廣泛用于微動機器人的主要部件之一,其剛度性能直接影響微動機器人的終端定位。 由于實際需要的多樣性和復雜性,使得其實際結構的幾何尺寸不能完全滿足傳統(tǒng)理論分析的假設條件,因此影響到對其性能的準確分析。利用有限元軟件ANSYS對雙邊圓弧形柔性鉸鏈和單邊圓弧形柔性鉸鏈在不同結構參數(shù)下的轉動剛度進行分析,并與其解析計算結果進行了比較,分析了其間產(chǎn)生誤差的原因。為MEMS中柔性鉸鏈的設計與應用提供一定的依據(jù)
40、。</p><p> 關鍵詞: 雙邊圓弧形柔性鉸鏈,單邊圓弧形柔性鉸鏈,有限元分析,剛度</p><p><b> Ⅰ引言</b></p><p> 隨著微機電系統(tǒng)(MEMS)技術的迅速發(fā)展,柔性鉸鏈因具有體積小、無機械摩擦、無間隙、剛性好和高靈敏度的特點,柔性鉸鏈被廣泛地應用于各種要求小角位移、高精度轉動的場合,如陀螺儀、加速度計、精密
41、天平等儀器儀表。柔性鉸鏈在微米級領域內(nèi)有著廣闊的應用前景。</p><p> 常見的柔性鉸鏈有兩種:直梁形柔性鉸鏈和圓弧形柔性鉸鏈。直梁形柔性鉸鏈有較大的轉動范圍,但運動精度較差;而圓弧形柔性鉸鏈的運動精度較高,但轉動范圍相對小。為了兼顧運動精度和運動范圍,又衍生出下面幾種轉動柔性鉸鏈:拋物線形柔性鉸鏈、橢圓形柔性鉸鏈、雙曲線形柔性鉸鏈等。柔性鉸鏈的基本性能主要包括剛度、精度及應力特性等幾方面,其中剛度性能直接
42、反映了柔性鉸鏈抵抗外載的能力,也體現(xiàn)了運動副的柔性程度,是主要的研究因素。1965年,Paros 等人首次公布其設計開發(fā)的圓形柔性鉸鏈,并給出了剛度計算公式。</p><p> 本文應用有限元軟件ANSYS10.0 對雙邊圓弧形柔性鉸鏈和單邊圓弧形柔性鉸鏈在不同結構參數(shù)下的轉動剛度進行分析,并與其解析計算結果進行了比較, 分析了其間產(chǎn)生誤差的原因。通過建立的雙邊、單邊圓弧形柔性鉸鏈參數(shù)與其剛度性能關系圖,分析了
43、圓弧形柔性鉸鏈各參數(shù)變化對其剛度性能的影響;通過分析比較雙邊、單邊圓弧形鉸鏈的剛度特性,結果顯示單邊圓弧形柔性鉸鏈具有更大的轉動能力,但其對軸向載荷的影響更為敏感,設計的單邊圓弧形柔性鉸鏈更適用于結構緊湊、需要大位移應用場合。給出了對柔性鉸鏈影響最大的關鍵加工參數(shù),為圓弧形鉸鏈的選擇和工程設計提供了理論依據(jù)。</p><p> ?、驁A弧形柔性鉸鏈剛度計算公式</p><p> 雙邊圓弧形
44、柔性鉸鏈的主視圖如圖1(a)所示,其橫截面為矩形。立體圖如圖1(b)所示。t、h、b 分別為圓弧型柔性鉸的最小厚度、高度和寬度,R 為圓弧的圓半徑,為圓弧的圓心角。如圖1(a)所示,在橫軸上截取微元,在受力作用前微元截面垂直于橫軸。微元高度為a,長度為 ,寬度等于圓弧的最小寬度b,在力矩Mz 的作用下柔性鉸鏈的角變形為</p><p><b> ?。?)</b></p><
45、;p><b> ?。?)</b></p><p><b> 式中:</b></p><p> 圓弧型鉸鏈的轉動剛度計算公式為:</p><p><b> (3)</b></p><p><b> 當(4)</b></p><
46、;p><b> ?。╝)</b></p><p><b> (b)</b></p><p> 圖1 雙邊圓弧型柔性鉸鏈模型</p><p> ?、髨A弧型柔性鉸鏈的有限元模型</p><p> ANSYS 是一種大型通用的有限元分析技術,計算功能強大,計算結果可靠的軟件。圓弧型柔性鉸鏈的基
47、本結構尺寸為:;材料選用鈹銅合金,其楊氏模量,泊松比,材料特性為各向同性。雙邊圓弧形柔性鉸鏈有限元模型如圖2(a)所示,對該模型左端面進行全約束,網(wǎng)格模型右端面的自由端為載荷的施加位置,施加彎矩;網(wǎng)格模型右端面的特殊節(jié)點1 為節(jié)點位移代表輸出位移;單元類型選擇3-D 實體SOLID92 單元模型,對整個模型使用Smartsize進行自由網(wǎng)格劃分。單邊圓弧形柔性鉸鏈的有限元模型如圖2(b)所示。通過分別改變圓弧型柔性鉸鏈的結構尺寸參數(shù)b、
48、t、以及R,得到各類結構參數(shù)改變的有限元模型。</p><p><b> ?。╝)</b></p><p><b> ?。╞)</b></p><p><b> 圖2 有限元模型</b></p><p> 剛度性能分析改變圓弧形柔性鉸鏈的結構尺寸參數(shù)b、t、以及R,分別計算
49、出在不同結構參數(shù)下圓弧型柔性鉸鏈的理論計算轉動剛度和有限元分析結果轉動剛度,如圖3 ~7所示。</p><p> 圖3 改變材料的楊氏模量E的圓弧型柔性鉸鏈轉動剛度有限元值與理論值比較</p><p> 圖4 改變寬度b的柔性鉸鏈轉動剛度有限元值與理論值比較</p><p> 圖5 改變厚度t的圓弧型柔性鉸鏈轉動剛度有限元值與理論值比較</p>
50、<p> 圖6 改變圓弧半徑的圓弧型柔性鉸鏈轉動剛度有限元值與理論值比較</p><p> 圖7改變圓弧半徑的圓弧型柔性鉸鏈轉動剛度有限元值與理論值比較</p><p> 由式(3)、(4)和圖3-7分析得:</p><p> (1) 由圖3、4 可見,轉動剛度與楊氏模量E、寬度b 呈線性遞增關系,且理論值比有限元值大,楊氏模量E 和寬度b 越小,
51、有限元值與理論值越接近。</p><p> (2) 由圖5 可知,轉動剛度的有限元值和理論值都與厚度t 呈曲線遞增關系,且增速越來越快。當t 越大,有限元值與理論值相差越大;當t< 2mm,有限元值與理論值越接近。</p><p> (3)由圖6-7 可知,轉動剛度的有限元和理論值都與半徑R 呈曲線遞減關系,減幅較??;轉動剛度的有限元值與理論值接近。</p><p&
52、gt; (4)分析圖3 - 7可知,雙邊圓弧形鉸鏈的剛度比單邊圓弧形鉸鏈的剛度大。</p><p> 分析圖3-7可得圓弧型柔性鉸鏈各設計參數(shù)對其轉動剛度的影響程度依次為:厚度t 影響最大,其次為圓弧半徑R,再次為圓心角,最后為楊氏模量E、寬度b。圓弧型柔性鉸鏈的轉動剛度理論值與有限元值不相等,甚至有較大差值的可能原因是:</p><p> ?。?)利用材料力學的梁彎曲理論建立的柔性鉸
53、鏈理論模型,是建立在一定假設條件基礎之上。</p><p> (2)從有限元模型圖3可見,當給模型自由端施加Z 軸的轉矩MZ 時,有限元模型不僅在Y 軸方向產(chǎn)生位移,同時在Z 軸上也有位移變化。也就是說,柔性鉸鏈不僅只發(fā)生彎曲變形,同時有剪力將引起柔性鉸鏈截面曲翹變形。在一定的結構參數(shù)下,柔性鉸鏈的理論解與有限元分析吻合的很好。</p><p><b> ?、?結論</b
54、></p><p> 通過分析比較雙邊、單邊圓弧形柔性鉸鏈的轉動剛度理論解與有限元分析,得出不同結構參數(shù)對柔性鉸鏈轉動剛度的影響程度及線性關系。其中圓弧型柔性鉸鏈各設計參數(shù)對其轉動剛度的影響程度依次為:厚度t 影響最大,其次為圓弧半徑R,,最后為楊氏模量E、寬度b。并闡述了圓弧型柔性鉸鏈的轉動剛度理論值與有限元值不相等的主要原因是:柔性鉸鏈不僅只發(fā)生彎曲變形,同時有剪力將引起柔性鉸鏈截面曲翹變形。通過分析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論