機(jī)械設(shè)計(jì)制造及其自動化外文翻譯-----柔性制造系統(tǒng)的發(fā)展運(yùn)用在實(shí)際制造中的范例_第1頁
已閱讀1頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p>  Development of Flexible Manufacturing System using Virtual Manufacturing Paradigm</p><p>  Sung-Chung Kim* and Kyung-Hyun Choi</p><p>  School of mechanical engineering, Chungbuk Nati

2、onal University, Cheongju, South Korea,</p><p>  School of mechanical engineering, Cheju National University, Cheju, South Korea</p><p><b>  ABSTRACT</b></p><p>  The im

3、portance of Virtual Manufacturing System is increasing in the area of developing new manufacturing processes, implementing automated workcells, designing plant facility layouts and workplace ergonomics. Virtual manufactu

4、ring system is a computer system that can generate the same information about manufacturing system structure, states, and behaviors as is observed in a real manufacturing. In this research, a virtual manufacturing system

5、 for flexible manufacturing cells (VFMC), (which is a </p><p>  Key Words :FMS, virtual manufacturing system, CIM, object-oriented paradigm, TID</p><p>  Recent trends in manufacturing systems,

6、 such as the need for customized products by small batches and for fast product renewal rates, have been demanding new paradigmsinmanufacturing. Therefore, the modern manufacturing systems are needed to be adaptable,

7、 and have the capability to reconfigure or self configure their own structure. Flexible Manufacturing Cells (FMCs) are generally recognized as the best productivity tool for small to medium batch manufacturing, and are a

8、lso basic unit to con</p><p>  As one of approaches to these requirements, Virtual Manufacturing (VM) approach has been introduced, and known as a effective paradigm for generating a model of manufacturing s

9、ystems and simulating manufacturing processes instead of their operations in the real world. VM pursues the informational equivalencewith real manufacturing systems. Therefore, the concept of Virtual Manufacturing Syste

10、m is expected to provide dramatic benefits in reducing cycle times, manufacturing and production costs, </p><p>  With an object-oriented paradigm, computer-based technologies such as virtual prototyping and

11、 virtual factory are employed as a basic concept for developing the manufacturing processes, including the layout of the optimal facility, to produce products. Virtual prototyping is a process by which advanced computer

12、simulation enables early evaluation of new products or machines concept without actually fabricating physical machines or products. Bodner, et al.,[3] concentrated on the decision problem</p><p>  Despite it

13、s benefits and applicability, VM systems should deal with a number of models of various types and require a large amount of computation for simulating behavior of equipment on a shop floor. To cope with this complexity i

14、n manufacturing, it is necessary to introduce open system architecture of modeling and simulation for VM systems. </p><p>  In this paper, three models, which are product, device, and process models will be

15、addressed. Especially processmodelforFMC will be emphasizedusing QUEST/IGRIP asan implementation issue. The open system architecture consists of well-formalized modules for modeling and simulation that have careful

16、ly decomposed functions and well-defined interface with other modules.</p><p>  2. Concept of virtual manufacturing </p><p>  Virtual Manufacturing System is a computer model that represents the

17、 precise andwhole structure of manufacturing systems and simulates their physical and logical behavior in operation, as well as interacting with the real manufacturing system. Its concept is specified as the model of pr

18、esent or future manufacturing systems with all products, processes, and control data. Before information and control data are used in the real system, their verification is performed within virtual manufacturing </p&g

19、t;<p>  Virtual environments will provide visualization technology for virtual manufacturing. The virtual prototype is an essential component in the virtual product life cycle, while the virtual factory caters for

20、 operations needed for fabricating products. Therefore, the developments in the area of virtual prototyping and virtual factory will enhance the capabilities of virtual manufacturing.</p><p>  The major bene

21、fit of a virtual manufacturing is that physical system components (such as equipment and materials) as well as conceptual system compvonents(e.g., process plans andequipment schedules) can be easily represented through

22、 the creation of virtual manufacturing entities that emulate their structure and function. These entities can be added to or removed from the virtual plant as necessary with minimal impact on other system data. The soft

23、ware entities of the virtual factory have a hi</p><p>  For virtual manufacturing, three major paradigms have been proposed, such as Design- centered VM, Production-centered VM, and Control- centered VM. The

24、 design-centered VM provides an environment for designers to design products and to evaluate the manufacturability and affordability of products. The results of design-centered VM include the product model, cost estimate

25、, and so forth. Thus, potential problems with the design can be identified and its merit can be estimated. In order to maintain t</p><p>  The virtual manufacturing approach in this paper is close to Control

26、-centered VM. Fig.1 illustrates the viewpoint of the functional model of the virtual flexible manufacturing cell. Since the activity Execute real manufacturing systems depicts a model of real factory, it possibly replace

27、s real factory. All manufacturing processes except physical elements of virtual manufacturing,suchasdesign, process planning, scheduling, are included in the activity Operation of Virtual factory. The activity</p&g

28、t;<p>  3. Object modeling for virtual flexible manufacturing cells</p><p>  Object-oriented technology may provide a powerful representation and classification tools for a virtual flexible manufactu

29、ring cell. It may also provide a common platform for the information sharing between sub-modules, and provide a richer way to store/retrieve/modify information, knowledge and models and reuse them. In the context of an o

30、bject oriented approach, a model is simply an abstraction, or a representation of an objects or process. </p><p>  VFMC requires a robust information infrastructure that comprises rich information models for

31、 products, processes and production systems. As shown in Fig. 2, three models, that is product model, facility model, and process model, are developed for virtual flexible manufacturing cells. A product model is a generi

32、c model used for representing all types of artifacts, which appear in the process of manufacturing. It represents target products, which include conceptual shape information as well as ana</p><p>  manufactu

33、ring processes.</p><p>  3.1 Product model </p><p>  A product model holds the process and product knowledge to ensure the correct fabrication of the product with sufficient quality. It acts as

34、an information server to the other models in the VFMC. It also provides consistent and up-to-date informationon theproductlifecycle, user requirements, design, and process plan and bill of material. An instance of Cla

35、ss Part provides detailed information about a part to be fabricated in VFMC. Sub-classes like ProcessPlan, BOM, and NcCode, are aggregated </p><p>  3.2 Facility model</p><p>  Real manufacturin

36、g cell may consist of NC machines, robots, conveyors, and sensory devices. The architecture of class corresponding to the real manufacturingcellis showninFig.3, and representsthefactorymodel. In VFMC, characterist

37、ics of the factory model include a detailed representation of machine behavior over time, a structure to the model that can configure and reconfigure easily,anda realistic and three-dimensional animation of machine beh

38、avior over time. Virtual machines defined w</p><p>  3.3 Process model</p><p>  By assigning a finite set of states to each device in a cell (idle, busy, failed, etc.), the process of cell contr

39、ol can be modeled as a process of matching specific state change events to specific cell control actions, decision algorithms, or scripts. With this model, cell processes are represented a Task Initiation Diagram (TID) u

40、sing an object-oriented approach. The methodology behind developing TID regards the tasks to be performed by the cell or any of its constituent machines for being pri</p><p>  Formally, a Task Initiation Dia

41、gram (TID) is defined as the four-tuple TID=(T, SR, C, O). Task Initiation Diagrams are composed of two basic components: a set of Rest states SR and a set of tasks T. Tasks, in turn, are classified into three groups: th

42、e cell configuration dependant task (Td), the cell configuration independent task (Ti), and the cycle transit task (Tt). Cell configuration dependent tasks are those which require some coordination among cell components

43、to carry out the task. For ex</p><p>  To complete the diagram, it is necessary to define the relationship between the states and the tasks. This can be done by specifying two functions connecting states to

44、tasks: the condition functionC, and the output functionO. The condition function C defines, for each taskTi, the set of states for task C(Ti). Some condition functions may use guiding parameters in addition to a set of

45、 states. As an example, C(Tt) uses a Remaining Processing Time (RPT) to cause transition to the desired state.</p><p>  The output function O defines for each TaskTithe set of output States for the transi

46、tion O(Ti).</p><p>  The Operation Initiation Diagram (OID) is the second layer diagram of the Task Initiation Diagram (TID). In the same way of TID to represent the model, the Operation Initiation Diagram O

47、ID is defined as the four-tuple, OID(task)=(OP,Sv,C,O). The symbol OP defines set of operation required for a given task. The operation, OP, is categorized into two groups: guided operations OPg and unconditional operati

48、ons OPu. A guided operation is one that requires an external trigger to start it. Unconditiona</p><p>  The symbol Sv indicates the set of visit-state. The visit-state, Sv, indicates an interaction between t

49、womachinesandhencerequires coordination among them. The symbol of this state has the patternR-M-- for the robot, as an example, the state RvMnm. The small letterv represents the visit-state of the robot associated

50、 with location,Mn represents a machine served by the robot, andm represents the index of one of the visit locations. During the completion of the task, thebusy states areemp</p><p>  of state and guiding

51、 conditions necessary for each operation OPi i.e. C(Opi). The output operatorO, defines the set of states resulting from each operation OPi, i.e., O(OPi).</p><p>  4. Control architecture for VFMC</p>

52、<p>  Cell operation involves tasks to be performed on single machines independent of others, and tasks that to require the cooperation of two or more machines. In cases where a task calls for the coordination of

53、two or more machines, the cell controller has to be involved to ensure proper execution of that task. For tasks involving a single machine, the primary function of a controller is to schedule the start of the task, and w

54、aits for its completion to command the nest task. In order to accomplish </p><p>  The lowermost layer of the controller consists ofthe VirtualDevices which monitor and continuously mirror, in real time, t

55、he state of the physical machine they represent. Each machine state is analyzed by its Virtual Device and reported to the corresponding Virtual holons as required. The Virtual Devices also serve as conduits for commands

56、from the Virtual holons to the physical machines.</p><p>  5. Conclusion</p><p>  Inthisstudy,theconceptofvirtual manufacturing is investigated, and three models, such as the product, the

57、facility, and the process model, aredeveloped forvirtualflexible manufacturing cells. A product model is a generic model used for representing all types of parts, which appear in the process of manufacturing. A facili

58、ty model contains information about machines consisted of a virtual flexible manufacturing cell. A process model is used for representing all the physical processes tha</p><p>  further research and developm

59、ent in this area.</p><p>  References</p><p>  1. Iwata, KazuakiVirtual Manufacturing System asAdvanced InformationInfrastructurefor IntegratingManufacturingResources and Activities, Annal

60、s of CIRP, Vol. 46, No. 1, pp. 399, 1997.</p><p>  2. Kimura Fumihito "Product and Process Modeling asaKernelfor VirtualManufacturing Environment," Annals of CIRP, Vol. 42, No. 1, pp. 147-151,

61、1993.</p><p>  3.Bodner,D.,Park,J.,Reveliotis,A.,and McGinnis, F., Integration of structural and perfromance-orientedcontrolinflexible</p><p>  automated manufacturing , Proceedings of

62、 1999 IEEE/ASME InternationalConferenceon Advanced Intelligent Mechatronics, USA, pp.345-250, 1999.</p><p>  4. Onosato, M., and Iwata, K.,Development of a Virtual manufacturing System by Integrating Prod

63、uct Models and Factory Models, Annals of the CIRP, Vol. 42, No.1, pp. 475-478, 1993.</p><p><b>  摘要</b></p><p>  虛擬制造系統(tǒng)的重要性是在新的制造業(yè)發(fā)展過程中逐漸凸顯出來的,進(jìn)行自動化操作、設(shè)計(jì)工廠設(shè)備的布局以及工作場所的人機(jī)工程學(xué)。虛擬制造系統(tǒng)是一種

64、被描述在現(xiàn)實(shí)制造業(yè)的,可以產(chǎn)生關(guān)于機(jī)械系統(tǒng)結(jié)構(gòu)、狀態(tài)、運(yùn)轉(zhuǎn)情況信息的一個計(jì)算機(jī)系統(tǒng)。在此研究中,一個柔性制造單元的虛擬制造系統(tǒng)(建立計(jì)算機(jī)集成系統(tǒng)的一種有用工具),已經(jīng)開發(fā)使用面向?qū)ο蟮姆独?,以及QUEST/IGRIP 軟件的實(shí)施。系統(tǒng)中的三個使用對象分別被定義為產(chǎn)品型號、設(shè)施模型和過程模型。面向任務(wù)說明圖作為一個柔性制造單元的具體行為的代表,簡TID。一個模擬范例的執(zhí)行作為發(fā)展模式的適用性評估,并且證明了虛擬制造系統(tǒng)的潛在價值。<

65、;/p><p>  關(guān)鍵詞:柔性制造系統(tǒng);虛擬制造系統(tǒng);計(jì)算機(jī)集成系統(tǒng);面向?qū)ο蟮姆独?;面向任?wù)說明圖</p><p>  柔性制造系統(tǒng)的發(fā)展運(yùn)用在實(shí)際制造中的范例</p><p>  宋鐘金 機(jī)械工程學(xué)院,國立忠北大學(xué),清州,韓國,</p><p>  慶鉉彩 濟(jì)州大學(xué),機(jī)械工程國立大學(xué),濟(jì)州,韓國</p><p>  

66、當(dāng)前制造系統(tǒng)的最新發(fā)展趨勢已經(jīng)凸顯出新型生產(chǎn)模式的需求,例如小批量訂制產(chǎn)品的需求和快速的產(chǎn)品更新率。因此,現(xiàn)代制造業(yè)需要適應(yīng)力,并且有重新配置或者自我配置他們自身結(jié)構(gòu)的能力。普遍認(rèn)為柔性制造單元是生產(chǎn)小批量到中批量產(chǎn)品的最好的生產(chǎn)工具,而且作為一個基本單元,建立一個生產(chǎn)車間對于計(jì)算機(jī)集成系統(tǒng)的重要性不言而喻。然而,由于其復(fù)雜性,與柔性制造系統(tǒng)相關(guān)的模擬和操作方法在實(shí)施前必須被核實(shí)。</p><p>  作為改善現(xiàn)

67、狀的方法,虛擬制造的概念被引入。在現(xiàn)實(shí)世界里,它們通過生成制造系統(tǒng)模型的有效模式和模擬制造過程而聞名,并不是它們的實(shí)際制造。柔性制造追求信息和實(shí)際制造系統(tǒng)的等價。因此,虛擬制造系統(tǒng)的產(chǎn)生預(yù)計(jì)將給減少周期時間、制造和生產(chǎn)成本提供良好的效果,并且它還可以幫助現(xiàn)有生產(chǎn)商,通過提高全球設(shè)備的關(guān)聯(lián),更加快速的創(chuàng)造新產(chǎn)品、提高生產(chǎn)率、降低運(yùn)營成本。</p><p>  通過面向?qū)ο蠓独?,?jì)算機(jī)基礎(chǔ)技術(shù)是作為制造業(yè)的一個發(fā)展過

68、程來定義的,如虛擬樣機(jī)和虛擬工廠。包括優(yōu)化設(shè)備布局,來生產(chǎn)產(chǎn)品。虛擬樣機(jī)研究是利用先進(jìn)計(jì)算機(jī)提前對新產(chǎn)品和新機(jī)械模擬的一個過程,實(shí)際上與物理機(jī)械和產(chǎn)品無關(guān)。博德納,等集中在與組裝電子零件在印刷電路板上的個人計(jì)算機(jī)決策問題。虛擬工廠是在現(xiàn)實(shí)世界中與現(xiàn)實(shí)車間相同的,一個現(xiàn)實(shí)的、高度可視化的、三維圖形表示的與生產(chǎn)復(fù)雜聯(lián)系的控制系統(tǒng)和現(xiàn)實(shí)工廠。虛擬工廠越來越多的走進(jìn)制造業(yè)工廠作為實(shí)際零件的描述。工廠車間的代表是VirtualWork系統(tǒng)。<

69、;/p><p>  盡管它的好處和適用性,虛擬制造系統(tǒng)應(yīng)處理的各種型號的數(shù)量,需要模擬一個車間的設(shè)備的行為大量的計(jì)算。為了應(yīng)付這一制造復(fù)雜,有必要引進(jìn)虛擬機(jī)系統(tǒng)建模與仿真開放系統(tǒng)架構(gòu)。在本文中,三種模式,即產(chǎn)品,設(shè)備和流程模型將得到解決。特別是對于柔性制造系統(tǒng)的進(jìn)程模式將強(qiáng)調(diào)使用QUEST/IGRIP以作為執(zhí)行問題探索。開放式系統(tǒng)架構(gòu)包含有詳細(xì)分解職能,明確與其他模塊的接口以及建模和仿真,正式模塊。</p>

70、;<p><b>  2 虛擬制造概念</b></p><p>  虛擬制造系統(tǒng)是一種計(jì)算機(jī)模型,代表了制造系統(tǒng)的準(zhǔn)確和整體結(jié)構(gòu),并模擬其物理和邏輯的操作行為,以及與實(shí)際制造系統(tǒng)的相互作用。它的概念是指定為現(xiàn)在或未來的制造系統(tǒng)的所有產(chǎn)品,流程模型,并控制數(shù)據(jù)。在數(shù)據(jù)和控制信息在實(shí)際只能夠使用之前,其校核是在虛擬制造環(huán)境中進(jìn)行。此外,它的地位和信息從實(shí)際系統(tǒng)反饋到虛擬系統(tǒng)。<

71、;/p><p>  虛擬環(huán)境將提供虛擬制造可視化技術(shù)。虛擬樣機(jī)是在虛擬的產(chǎn)品生命周期的重要組成部分,而為迎合虛擬工廠制造產(chǎn)品所需的操作。因此,在虛擬樣機(jī)和虛擬工廠將加強(qiáng)虛擬制造能力方面的發(fā)展。</p><p>  虛擬制造的一大好處是,物理系統(tǒng)組件(如設(shè)備和材料)以及概念體系(如生產(chǎn)計(jì)劃和設(shè)備附表)可以方便地通過虛擬制造實(shí)體的代表,可以模仿他們的創(chuàng)作結(jié)構(gòu)和功能。這些實(shí)體可以被添加到或從虛擬實(shí)體

72、中刪除,而對其他系統(tǒng)的數(shù)據(jù)影響必定很少。</p><p>  在虛擬工廠的軟件實(shí)體有一個真實(shí)的系統(tǒng)組成部分的高對應(yīng),從而貸款有效性進(jìn)行旨在幫助在實(shí)際系統(tǒng)決策者的虛擬系統(tǒng)進(jìn)行模擬。</p><p>  對于虛擬制造,三大范式已經(jīng)被提出,如設(shè)計(jì)為中心的虛擬機(jī),生產(chǎn)為中心的虛擬機(jī),和控制為中心的虛擬機(jī)。該設(shè)計(jì)中心為設(shè)計(jì)人員提供了一個虛擬機(jī)環(huán)境中進(jìn)行產(chǎn)品設(shè)計(jì)及制造性評價和產(chǎn)品的承受能力。柔性工裝設(shè)

73、計(jì)中心的結(jié)果包括產(chǎn)品模型、成本估計(jì)和以上一些。因此,隨著設(shè)計(jì)可以找出潛在的問題,其優(yōu)點(diǎn)顯而易見。為了保持與實(shí)際機(jī)械產(chǎn)品無關(guān)的制造能力,柔性制造生產(chǎn)中心提供用于生成工藝計(jì)劃和生產(chǎn)計(jì)劃的環(huán)境,資源需求規(guī)劃(新購置設(shè)備等),并評估這些計(jì)劃。這可以提供更準(zhǔn)確的成本信息和產(chǎn)品交付時間表。通過提供模擬實(shí)際生產(chǎn)的能力,控制中心的虛擬機(jī)提供了工程師評估方面的新的或修改產(chǎn)品設(shè)計(jì)到車間有關(guān)的活動環(huán)境。柔性制造控制中心提供優(yōu)化的制造工藝和提高生產(chǎn)系統(tǒng)的信息。

74、</p><p>  本文的虛擬制造方法是接近控制為中心的虛擬機(jī)。圖1說明了虛擬柔性制造單元的功能模型的觀點(diǎn)。由于活動的實(shí)際執(zhí)行制造系統(tǒng)描繪了一個真正的工廠模式,它有可能取代真正的工廠。所有的制造過程中的虛擬工廠經(jīng)營活動,除了虛擬制造的內(nèi)在因素,如設(shè)計(jì)、工藝規(guī)劃和調(diào)度。虛擬工廠的活動執(zhí)行模擬系統(tǒng)是一個單獨(dú)的虛擬機(jī)仿真模型。有了這個虛擬工廠,參數(shù)(例如,利用,手術(shù)時間等)與經(jīng)營相關(guān)的柔性制造單元就可以進(jìn)行模擬。而這

75、些結(jié)果可以為生產(chǎn)過程的控制和預(yù)測潛在的實(shí)際生產(chǎn)問題的可能性。</p><p>  3. 虛擬柔性制造單元的對象建模</p><p>  面向?qū)ο蠹夹g(shù)可以提供一個虛擬柔性制造單元強(qiáng)大的代表性和分類工具。它也可以提供一個與子模塊的信息共享共用平臺,并提供更豐富的方式來存儲/檢索/修改信息,知識和模型和重復(fù)使用他們。在面向?qū)ο蟮姆椒ㄖ?,一個模型就是一個抽象的概念,或者是一個對象或過程的代表性。虛

76、擬柔性制造系統(tǒng)需要一個強(qiáng)大的信息基礎(chǔ)設(shè)施,包括豐富的產(chǎn)品信息模型、工藝和生產(chǎn)系統(tǒng)。如圖所示,二、三種模式,即產(chǎn)品型號,設(shè)備模型,過程模型,用于開發(fā)虛擬柔性制造單元。在制造過程中,一個產(chǎn)品是在所有類型工件中一種類型的代表。它代表了目標(biāo)產(chǎn)品,其中包括概念形狀信息以及分析模塊的規(guī)范,生產(chǎn)力和實(shí)力一個設(shè)施模型包含關(guān)于一個虛擬機(jī)組成的柔性制造單元的信息。利用該模型,可以對創(chuàng)新的工具和方法進(jìn)行評價,不必花費(fèi)成本用于物理樣機(jī)和夾具實(shí)物。一個流程模型用

77、于代表所有的物理過程和制造過程所必需的代表產(chǎn)品的行為。</p><p><b>  3.1 產(chǎn)品模型</b></p><p>  一個產(chǎn)品模型用它的過程和產(chǎn)品信息來確保產(chǎn)品有足夠的高質(zhì)量的正確制造。在虛擬柔性制造中,它扮演其他模型的服務(wù)器的角色。它還提供一致的和最新的最新的產(chǎn)品生命周期的信息,用戶需求,設(shè)計(jì)和工藝方案和材料清單。它還提供一致的和最新的產(chǎn)品生命周期,用戶

78、需求,設(shè)計(jì)信息,工藝方案和材料清單。第一個類的實(shí)例提供了一個詳盡的資料,以便在虛擬柔性制造中制造。分樣工藝方案,BOM和NcCode上課,聚合到類的一部分。這類工藝計(jì)劃和BOM信息和操作過程的計(jì)劃和材料清單,分別關(guān)聯(lián)的數(shù)據(jù)。數(shù)控類NcCode處理方案,與CAD / CAM系統(tǒng)進(jìn)行交互。與設(shè)施納入模型,這個開發(fā)數(shù)控程序可以核實(shí),而與任何碰撞工件或夾具刀具干涉檢查。這可避免昂貴的計(jì)算機(jī)崩潰和減少在初始設(shè)備安裝和生產(chǎn)發(fā)射的危險。此外,可提高生

79、產(chǎn)力的方案,避免在機(jī)床上證明了非生產(chǎn)性時間,并利用模擬環(huán)境,以培養(yǎng)新機(jī)械的操作人員。</p><p><b>  3.2 實(shí)物模型</b></p><p>  真正的制造單元可包括數(shù)控機(jī)床,機(jī)器人,輸送機(jī),和感應(yīng)器。階級結(jié)構(gòu)所對應(yīng)的實(shí)際制造單元是在圖3所示,代表了工廠模式。在VFMC,工廠的模型特征包括對機(jī)器的行為隨著時間的推移,一到模式,可以輕松地配置和重新配置,并

80、隨時間的機(jī)器行為的現(xiàn)實(shí)和三維動畫結(jié)構(gòu)的詳細(xì)陳述。在這個定義的虛擬機(jī)模型可以用來準(zhǔn)確評估計(jì)劃的進(jìn)程優(yōu)點(diǎn),并在此基礎(chǔ)上評價,確定合適的工藝條件,改善(甚至優(yōu)化)計(jì)劃。虛擬機(jī)器人有助于卸載和/從機(jī)的負(fù)荷零件組成部分,是用來尋找最佳路徑?jīng)]有任何碰撞。隨著虛擬操作,機(jī)器人的機(jī)械加工和利用時間和費(fèi)用估計(jì)保真度可望提高。此外,準(zhǔn)確的預(yù)測模型將已加工的一部分,它不能確定容易產(chǎn)生一些不可靠的物理原型的質(zhì)量。此信息是非常寶貴的兩個設(shè)計(jì)師和工藝師。例如機(jī)器和

81、工件的物理實(shí)體,作為它們的形狀,位置的3 - D模型明確表示,和方向。三維模型,用于計(jì)算方便,幾何屬性,檢查空間關(guān)系,并顯示計(jì)算機(jī)圖形。</p><p><b>  3.3過程模型</b></p><p>  指定一個有限狀態(tài)設(shè)置為每個設(shè)備在一個單元格(空閑,忙碌,沒有等),對細(xì)胞的控制過程可以建模為一個特定的匹配狀態(tài)改變細(xì)胞的活動,以具體行動控制,決策算法的過程中,

82、或腳本。有了這個模型,細(xì)胞程序啟動一個任務(wù)是代表圖(工貿(mào)署)使用面向?qū)ο蟮姆椒ā9べQ(mào)署背后的發(fā)展方面,由原始細(xì)胞或正在其執(zhí)行的任務(wù)組成機(jī)器的方法,并采用了多層次的辦法。感官信號表明了機(jī)器狀態(tài)的變化是用來觸發(fā)或啟動任務(wù)。一個任務(wù)可能很簡單,需要一個相對短的時間執(zhí)行,或可能是復(fù)雜和漫長。</p><p>  形式上,一個工作啟動圖(TID)被定義為4元組TID=(噸,鍶,碳,氧)。任務(wù)起始圖是由兩個基本部分組成:一組

83、休息狀態(tài)SR和一組任務(wù)噸的任務(wù),又分為3組:細(xì)胞結(jié)構(gòu)依賴任務(wù)(Td)的,獨(dú)立的單元配置任務(wù)(鈦),而且這個周期過境任務(wù)(TT)的。電池配置相關(guān)任務(wù)是那些需要一些電池組件之間進(jìn)行協(xié)調(diào)的任務(wù)。例如,在aRobot加載部分工作負(fù)荷:阿米利要求的aRobot和阿米利的行動進(jìn)行協(xié)調(diào)。單元配置獨(dú)立的任務(wù),只需要一個單元組件來執(zhí)行任務(wù)。該任務(wù)在機(jī)器人移動到移動到:計(jì)算機(jī)名配置獨(dú)立的,因?yàn)樗怯蓹C(jī)器人,若未與其他組件進(jìn)行交互。測控任務(wù)是用于從一個周期到

84、另一個過渡,從而產(chǎn)生由系統(tǒng)自動完成,以生產(chǎn)工作。其余狀態(tài)的簡名,表明細(xì)胞成分,必須等待下一個任務(wù)。這種狀態(tài)是在任何特定的國家收集其成分瞬間。這些復(fù)合狀態(tài)描繪在任務(wù)啟動圖由橢圓,如R11的/ 3或的M13 / 4。這些符號的最后一個數(shù)字表明有多少個別國家必須確定這種復(fù)合狀態(tài)。</p><p>  要完成圖,它是需要明確的狀態(tài)之間的關(guān)系和任務(wù)。這可以通過指定兩個函數(shù)連接狀態(tài)任務(wù):條件函數(shù)C和輸出功能O的條件函數(shù)的C定

85、義為每個任務(wù)鈦,為任務(wù)的狀態(tài)集合C(鈦)。一定條件下可使用的指導(dǎo)功能,除了一組狀態(tài)參數(shù)。作為一個例子,C級(TT)的使用剩余加工時間(RPT)使過渡到理想狀態(tài)。輸出功能Ø)定義為每個工作鈦鈦的輸出狀態(tài)設(shè)定為過渡。</p><p>  該行動啟動圖(OID)是該任務(wù)啟動圖(TID)第二層圖。TID在同樣的方式來表示模型,該行動啟動圖的OID是四元組的OID(任務(wù)定義)=(任擇議定書,希沃特,碳,氧)。任擇

86、議定書設(shè)立的符號定義為一個給定的操作任務(wù)所需。行動中,執(zhí)行部分,分為兩組:指導(dǎo)行動OPG和無條件的光學(xué)讀取頭業(yè)務(wù)。甲式的操作是需要一個外部觸發(fā)來啟動它。無條件行動是那些開始對所有必要的狀態(tài)開始自動。</p><p>  符號希沃特指示訪問狀態(tài)集。這次訪問狀態(tài),希沃特,表明兩臺機(jī)器之間,因此要求它們之間的協(xié)調(diào)互動。這個國家的象征有模式馬幣 - 為機(jī)器人為例,國家RvMnm。小字母v代表訪問,與位置相關(guān)的機(jī)器人狀態(tài),

87、錳代表由機(jī)器人擔(dān)任一機(jī),米代表訪問的地點(diǎn)之一索引。在任務(wù)完成后,繁忙的狀態(tài)是就業(yè),并說明操作之間的過渡狀態(tài)或兩個處決沒有互動。他們可以從機(jī)器人承認(rèn)國家的象征,RTN的。小字母T顯示了與轉(zhuǎn)型相關(guān)的機(jī)器人狀態(tài)。這些國家是有益的,避免與障礙物碰撞。 C公司的條件,規(guī)定了國家規(guī)定的必要條件和指導(dǎo)每個操作的OPI即C(OPI的)。輸出經(jīng)營澳,確定了每個操作的OPI,即澳(OPI的)造成的狀態(tài)的集合。</p><p>  4

88、 虛擬柔性工裝的架構(gòu)</p><p>  細(xì)胞的運(yùn)作涉及到的是具有獨(dú)立單機(jī)他人,和任務(wù),要求兩個或更多的機(jī)器合作的任務(wù)。一個任務(wù)的情況下為兩個或更多的機(jī)器,需要協(xié)調(diào)的單元控制器,必須參與,以確保這項(xiàng)任務(wù)的正確執(zhí)行。對于涉及一臺機(jī)器的任務(wù),一個控制器的主要功能是安排任務(wù)的開始,并等待命令完成任務(wù)的巢。為了實(shí)現(xiàn)這些功能,是作為一個單元控制器既分散控制器分層控制器和混合結(jié)構(gòu)設(shè)計(jì),如圖所示,該控制器由三個不同的層次。該調(diào)

89、度,分散控制層和虛擬設(shè)備層。在圖中,信息和信息傳遞以表示箭頭。調(diào)度程序是一個核心組件,它接收從分散控制層中的所有虛擬柔性工裝機(jī)器的狀態(tài),并決定適當(dāng)?shù)南乱粋€任務(wù)。然后,它的下一個任務(wù)調(diào)度要執(zhí)行的分散控制層。它使用過程的知識基礎(chǔ)細(xì)胞含有的例行任務(wù),是從工貿(mào)署生成的規(guī)則。分散控制層組成的虛擬機(jī)到物理機(jī),模擬的虛擬驅(qū)動程序。他們的主要作用是協(xié)調(diào)和執(zhí)行之間的細(xì)胞成分合作,以進(jìn)行調(diào)度層所要求的任務(wù)。他們提供了一個獨(dú)立的接口設(shè)備的實(shí)際電池組件通過翻譯

90、的一般命令和相應(yīng)的機(jī)器的錯誤信息。相互溝通中的虛擬層驅(qū)動程序和傳遞信息。一個虛擬驅(qū)動程序發(fā)送命令到相應(yīng)的物理機(jī),并接收該機(jī)器狀態(tài),通過在虛擬設(shè)備層的虛擬設(shè)備。</p><p>  控制器的最底部層的虛擬設(shè)備的監(jiān)控,不斷鏡子,在現(xiàn)實(shí)的時間組成,對他們所代表的物理機(jī)器狀態(tài)。每臺機(jī)器的狀態(tài)進(jìn)行了分析,并通過其虛擬設(shè)備的要求報告給相應(yīng)的虛擬控制器。虛擬設(shè)備也可作為從虛擬控制器命令到物理機(jī)管道。</p>&l

91、t;p><b>  5.結(jié)論</b></p><p>  在這項(xiàng)研究中,虛擬制造的概念進(jìn)行了研究,和三種模式,如產(chǎn)品,設(shè)施和過程模型,用于開發(fā)虛擬柔性制造單元。一個產(chǎn)品模型為代表的通用模型的零件,它在制造過程中出現(xiàn)的各種使用。一個設(shè)施模型包含關(guān)于一個虛擬機(jī)組成的柔性制造單元的信息。一個過程模型是用來代表所有的產(chǎn)品都為代表的行為和生產(chǎn)流程所需的物理過程。背后的發(fā)展VFMC方法是一種面向?qū)?/p>

92、象的范例,提供了強(qiáng)大的代表性和分類工具。對于IGRIP/QUEST是用來模擬模型所涉及的所有三維虛擬機(jī)執(zhí)行,并模擬在整個生產(chǎn)活動方面的工廠。仿真的具體行為描述的面向任務(wù)的說明(TID)。此外,還有模擬結(jié)果表明,證明了虛擬制造模式的適用性。制造業(yè)的潛力是支持虛擬制造的評估,并提供準(zhǔn)確的成本,交貨時間和質(zhì)量估計(jì)是這個領(lǐng)域的主要動機(jī)為進(jìn)一步研究和發(fā)展。</p><p><b>  參考文獻(xiàn)</b>

93、</p><p>  巖田,一明為整合制造資源和活動,志機(jī)械工程研究所,先進(jìn)的信息基礎(chǔ)設(shè)施卷虛擬制造系統(tǒng)。 46,第1期,頁。399,1997。</p><p>  木村不美人“在核心的虛擬制造環(huán)境下產(chǎn)品和過程建?!睓C(jī)械工程研究所,紀(jì)事,卷。 42,第1期,頁。147-151,1993。</p><p>  博德納,四,公園,j的,Reveliotis,A.和麥金尼

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論