版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 畢業(yè)設(shè)計(jì)外文資料翻譯</p><p> 題 目 柔弱巖石上短距離隧道 </p><p> 的動(dòng)態(tài)施工力學(xué)的研究 </p><p> 學(xué) 院 土木建筑學(xué)院 </p><p> 專 業(yè) 土木工程 </p>&
2、lt;p> 班 級(jí) 土木 </p><p> 學(xué) 生 </p><p> 二〇一 一 年 三 月 四 日</p><p> Modern Applied Science Vol. 4, No. 6; June 2010</p><p> 柔
3、弱巖石上短距離隧道的動(dòng)態(tài)施工力學(xué)的研究</p><p><b> 吳恒斌(通訊作者)</b></p><p> 重慶長(zhǎng)江三峽大學(xué)土木工程系</p><p> 中國(guó)重慶萬(wàn)州市二段沙龍路780號(hào)</p><p> 電子郵件:hbw8456@163.com</p><p><b>
4、賀云翔</b></p><p> 重慶長(zhǎng)江三峽大學(xué)土木工程系</p><p> 中國(guó)重慶萬(wàn)州市二段沙龍路780號(hào)</p><p><b> 郭良松</b></p><p> 聊城建宇工程有限公司</p><p> 中國(guó)聊城252000</p><p>
5、<b> 摘要</b></p><p> 基于建設(shè)理論的新奧地利方法((NAM)),依賴在柔弱巖石的短距離隧道工程,通過(guò)構(gòu)建數(shù)學(xué)模型并進(jìn)行了三維彈塑性有限元法的建構(gòu)過(guò)程中,雙邊墻的施工方法。分析隧道周圍一些測(cè)量點(diǎn)位移的變化和隧道開(kāi)挖和洞室群圍巖的穩(wěn)定性,通過(guò)分析地表塌陷、承擔(dān)的力量支護(hù)結(jié)構(gòu)與塑性區(qū)。結(jié)果表明,上述構(gòu)造法是合理的在以后的隧道開(kāi)挖,地表沉陷,隧道變形與早期隧道開(kāi)挖的影響比較明
6、顯。</p><p> 關(guān)鍵詞:柔弱的巖石、小距離隧道、動(dòng)態(tài)建筑機(jī)械、數(shù)值模擬</p><p><b> 1介紹</b></p><p> 過(guò)程的開(kāi)挖與支護(hù)隧道是一項(xiàng)復(fù)雜的機(jī)械加工過(guò)程,施工過(guò)程之間的差別,開(kāi)挖順序,支持的時(shí)間大為影響工程結(jié)構(gòu)系統(tǒng)(SHE et al., 2006).的力學(xué)效應(yīng)由于周圍巖石條件的復(fù)雜性普通的類似項(xiàng)目在柔弱巖
7、石特別是小距離隧道工程的復(fù)雜連接中是不夠的,因此,根據(jù)在施工過(guò)程中各負(fù)荷情況,在不同的圍巖中有必要進(jìn)行機(jī)械模擬和分析在柔弱巖石隧道襯砌方面的研究,SUN et al. (1994)考慮了時(shí)空效應(yīng)隧道挖掘表面建立三維數(shù)模型。CHENG et al. (1997) 分析了力學(xué)機(jī)制和FLAC隧道襯里復(fù)雜的承載能力,得到一些有用的結(jié)論。JIN et al. (1996) 應(yīng)用非線性粘彈性理論進(jìn)行了三維有限元模擬圓隧道開(kāi)挖過(guò)程。Karakus(2
8、007)闡述了由平面應(yīng)變分析造成的三個(gè)尺寸挖掘影響。因?yàn)闀r(shí)空效應(yīng)還不能全部體現(xiàn),許多研究人員進(jìn)行了三維彈塑性有限元法和隧道開(kāi)挖的彈塑性分析(AN, 1994, XIAO, 2000 & ZHU et al. 1996)。在小距離隧道方面的研究LIU et al. (2000)在中國(guó)第一個(gè)超級(jí)短距離隧道進(jìn)行的測(cè)試中距離隧道在中國(guó)。WAN et al. (200</p><p> 距離8車道公路隧道的設(shè)計(jì)方
9、案。大多數(shù)上述研究的目的分別是柔弱巖石隧道的建筑特征和小距離隧道建設(shè)方案的比較和選擇由于很少做結(jié)合兩方面的討論,因此,有必要研究小距離柔弱巖石動(dòng)態(tài)施工特點(diǎn)。</p><p><b> 2工程概況</b></p><p><b> 2.1工程地質(zhì)</b></p><p> 地質(zhì)調(diào)查顯示,底部隧道主要打通的是下面的基礎(chǔ),
10、主要是泥巖,砂巖。撞擊地層的方向交叉降至85°。隧道、地層傾角約有9°,結(jié)合層巖石很普通,巖石的等級(jí)是五級(jí)。地下水很匱乏,隧道中水的主要形式是潮濕或滴下來(lái)。鋼筋混凝土的極限抗壓強(qiáng)度= 4.59Mpa,完整性因素KV=0.65,K1 = 0.2,K2 = 0.3,K3 = 0,[工程量清單計(jì)價(jià)]= 219。砂巖鋼筋混凝土的極限抗壓強(qiáng)度=2549Mpa,完整因素KV=0.64,K1= 0.5,K2 = 0.2,K3 =
11、0,[工程量清單計(jì)價(jià)]= 319。地質(zhì)構(gòu)造的表面非常發(fā)達(dá),巖體極其支離破碎,而且塊強(qiáng)度不夠強(qiáng)。所以它屬于典型的類柔弱的巖石。</p><p> 2.2工程施工方法。</p><p> 雙墻指導(dǎo)施工方法中的配角,以先進(jìn)的小管為了減少隧道施工對(duì)高速公路經(jīng)營(yíng)管理的影響,確保隧道建設(shè)的安全雙邊墻施工方法以先進(jìn)的小管作為支撐角色引導(dǎo)。先進(jìn)小管的外半徑是Φ42mm,長(zhǎng)度是四十厘米。在施工過(guò)程中,開(kāi)
12、挖的長(zhǎng)度是受到嚴(yán)格控制的,主要支撐每隔四米設(shè)置一個(gè)。30厘米厚的封閉鋼筋混凝土環(huán)被襄鑄在第二內(nèi)襯和主要支撐之間。螺栓的形式是空心注漿和quincunx布局、直徑和長(zhǎng)度是作為軌道后,4.5米、垂直和周向所在分別是200厘米和80厘米第二內(nèi)襯和主要支撐被澆鑄成28厘米厚C20模型和60厘米厚C25厚鋼筋混凝土模型</p><p><b> 3數(shù)值模型</b></p><p&
13、gt; 隧道長(zhǎng)度是選為仿真模型,該模型被選為20米長(zhǎng),該模型有21850個(gè)小構(gòu)件其中螺栓有3850構(gòu)件(圖1)。隧道圍巖被認(rèn)為是彈塑性材料。因?yàn)橹谓Y(jié)構(gòu)的力學(xué)性能優(yōu)于圍巖,所以它可以被看作是彈性材料。鋼拱的影響在架子上和先進(jìn)的小管噴射混凝土可以模擬使用等效的方法。Tab.1是基本力學(xué)參數(shù)的物質(zhì)。為確保計(jì)算的準(zhǔn)確性該模型維度可以設(shè)為:左和右都長(zhǎng)50米垂直于地球表面下為50米。</p><p><b>
14、 4進(jìn)行結(jié)果分析</b></p><p> 4.1分析地表沉陷,</p><p> 地面沉降應(yīng)嚴(yán)格控制,以確保隧道施工中高速公路運(yùn)營(yíng)管理的安全隧道施工。從圖2,圖像的地表沉陷隧道開(kāi)挖完成后,它可以看出地表沉陷對(duì)稱分布近似在雙線隧道、展示W(wǎng)的形狀。早期隧道拱頂端地面沉降規(guī)模最大,沉降值為5.31mm,這是由于早期隧道開(kāi)挖完成以后,后期隧道建設(shè)造成的擾動(dòng),這和現(xiàn)場(chǎng)監(jiān)測(cè)的信息和數(shù)
15、據(jù)規(guī)</p><p> 則是一致的。后期隧道拱頂端地面沉降量是5.31mm。在隧道中軸線附近的地表沉降</p><p> 小于兩個(gè)隧道拱頂所在的地表沉降,沉降值只有2.87mm??梢詮膱D二中得出的結(jié)論是隧道開(kāi)挖的影響對(duì)地表沉陷趨于穩(wěn)定的距離范圍是中軸線直徑的3.5倍,也揭示了該仿真模型的選擇范圍是沒(méi)有錯(cuò)誤的</p><p><b> 4.2巷道變形分
16、析</b></p><p> 如圖3所示,后期隧道拱頂端的垂直地表沉降是7.20mm,最大的垂直地表沉降值出現(xiàn)在早期隧道拱頂端。因?yàn)橹蟮乃淼朗┕ば?是7.33mm。與一般的大垮較淺深度的隧道地表沉降的現(xiàn)場(chǎng)測(cè)量值相比,頂部處理的沉降值略小。可以假定,先進(jìn)的小管在加固巖石上發(fā)揮了很大作用,逆變值相對(duì)較大,早期的隧道和后期的隧道分別是9.87mm 9.85mm。分析結(jié)果表明,隧道圍巖的垂直缺陷值滿足施工
17、的需要、初始參數(shù)設(shè)定隧道結(jié)構(gòu)是合理的。</p><p> 4.3支撐承載力的分析</p><p> 如圖4所示,出現(xiàn)在拱腳的最大受力值是7.31Mpa.。在施工過(guò)程中應(yīng)該加強(qiáng)現(xiàn)場(chǎng)監(jiān)測(cè)的力度。從圖五中以發(fā)現(xiàn)在拱頂和拱腳位置的螺栓的軸向力更大。最大值是42.56kN,滿足抗拉強(qiáng)度要求。螺栓軸向力最主要的分布形式是“凸肚”式。符合螺栓軸向力在柔弱巖石上的分布格局。處在拱腳位置的少量螺栓時(shí)處于
18、壓縮狀態(tài)的??赡苡捎谥饕蔚膭偠忍?,結(jié)果是減少了拱腳的變形和反演脹的現(xiàn)象。從圖六中可以看出第二內(nèi)襯的應(yīng)力規(guī)律和主要支撐是相似的,邊墻的壓力要大于其他部位最大應(yīng)力值是0.2Mpa滿足在中國(guó)要求的標(biāo)準(zhǔn)</p><p><b> 4.4塑性區(qū)分析</b></p><p> 從圖7,便會(huì)發(fā)現(xiàn),塑性區(qū)主要分布在拱頂、拱門、拱門腳的位置,這也許是由于由雙邊墻施工方法造成的
19、過(guò)多的應(yīng)力進(jìn)入了側(cè)墻 。先進(jìn)的小管的支持、初期支護(hù),其次內(nèi)襯可以預(yù)防塑性區(qū)進(jìn)一步擴(kuò)張,塑性區(qū)深度,不會(huì)超過(guò)一半的隧道寬度,而在允許范圍內(nèi)。所以隧道圍巖塑性區(qū)的發(fā)隧洞的穩(wěn)定性隧道仍然情況穩(wěn)定。</p><p><b> 5結(jié)論</b></p><p> 隧道地表沉陷的分布在中心軸線基礎(chǔ)上,顯示W(wǎng)型,由于解決方案主要集中在3.5倍中心軸線的直徑范圍內(nèi),先進(jìn)小管的支持能
20、夠加固圍巖有效防止兩個(gè)隧道之間塑性區(qū)的擴(kuò)張。從圍巖結(jié)構(gòu)的變形結(jié)果可以看到后期隧道開(kāi)挖地表沉陷與隧道變形對(duì)早期的隧道的影響大于早期隧道開(kāi)挖對(duì)后期隧道的影響。對(duì)上述結(jié)果進(jìn)行分析地面沉降、隧道周邊的垂直位移,支撐的承載力和塑性區(qū)雙邊墻建設(shè)方案是合理的。</p><p><b> 參考文獻(xiàn)</b></p><p> 【中國(guó)巖石力學(xué)與工程】(3,623-629)三維彈塑性數(shù)
21、值模擬軟圍巖位移建設(shè)的進(jìn)程。佘健,何川(2006年)。</p><p> 【巖土力學(xué)】(4,20-33。)力學(xué)模擬及軟弱巖石中的行為分析,興建一條隧道開(kāi)放。孫軍,朱合華(1994年)。</p><p> 【巖土力學(xué)】(4,327-336)數(shù)值分析大型復(fù)雜的非線性變形機(jī)制及隧道襯砌。鄭華,孫軍(1997年)。</p><p> 【巖石和土壤力學(xué)】(3,193-
22、200)模擬三維隧道挖掘。靳鳳年、錢七虎(1996年)。?!舅淼琅c地下空間技術(shù)】(22,47-56)評(píng)價(jià)隧道的二維平面應(yīng)變有限元分析的影響及三維方法核算。M.Karakus(2007年)?!局袊?guó)民建工程】(5,87-91)三維有限元的軟土蠕變對(duì)隧道的影響。安官峰(2001年)。【中國(guó)巖土工程學(xué)報(bào)】(4,421-425)三維數(shù)值模型的地下洞室施工過(guò)程。肖明(2000年)。</p><p> 【施工力學(xué)】(北京
23、科學(xué)出版社)周邊復(fù)雜條件下圍巖穩(wěn)定性和巖石動(dòng)態(tài)。朱煒沉,何滿潮(1996年)</p><p> 【巖土力學(xué)】(5,590-594)實(shí)驗(yàn)研究機(jī)械特性和小間距隧道。劉顏青,韓世航,盧汝綏,馬榮田(2000年)?!靖咚俟贰浚?,55-58)討論環(huán)境對(duì)小間距研究長(zhǎng)隧道的影響。萬(wàn)明富(2000年)。【隧道安全工程雜志】(2,63-68)開(kāi)挖小距離隧道的方法分析。金曉廣,劉煒,秦峰,汪劍華(2004年)。</p&
24、gt;<p> 【中國(guó)巖石工程力學(xué)】(3,572-577)對(duì)軟巖施工特性和動(dòng)態(tài)行為的研究。嚴(yán)琦祥,何川,姚勇(2006年)。。</p><p> 【高速公路】(12,217)大跨公路隧道結(jié)構(gòu)設(shè)計(jì)與分析。劉紅州,陳三佳(2006年)</p><p> 圖1 有限元分析模型</p><p> 圖2 地表沉陷圖表
25、 圖3 圍巖的垂直位移(mm)</p><p> 圖4 主要支撐的等量壓力 圖5 螺栓的軸力圖</p><p> 圖6 次連接的等量應(yīng)力 圖7 圍巖的塑性區(qū) </p><p> Study on Dynamic Construction Mechanics
26、 of Small-Distance Tunnel</p><p> in Soft and Weak Rocks</p><p> Hengbin Wu (Corresponding author)</p><p> Department of Civil Engineering, Chongqing Three Gorge University</p
27、><p> 780 Erduan Shalong Road, Wanzhou District, Chongqing 404000, China</p><p> E-mail: hbw8456@163.com</p><p> Yunxiang He</p><p> Department of Civil Engineering, C
28、hongqing Three Gorge University</p><p> 780 Erduan Shalong Road, Wanzhou District, Chongqing 404000, China</p><p> Guoliang Song</p><p> Liaocheng Jianyu Construction Engineering
29、 Co.,Ltd</p><p> Liaocheng 252000, China</p><p><b> Abstract</b></p><p> Based on the construction theory of New Austria Method(NAM), relyed on a tunnel project of sm
30、all distance in</p><p> soft and weak rocks, this paper builds the numerical model and simulates 3D finite element method elastoplastic</p><p> of the construction process by the construction
31、method of double-sidewalls. The displacement changes of some</p><p> points around the tunnel are analysised with the tunnel’s excavation. The safety of the tunnel structure and</p><p> stabil
32、ity of surrounding rock are estimated by analyzing the surface subsidence, forces undertaken by the</p><p> supporting structures and plastic zone. The results show that the method of construction mentioned
33、 above is</p><p> reasonable, the influence of the later tunnel excavation on the surface subsidence and tunnel deformations of the</p><p> earlier tunnel excavation is relatively obvious.<
34、/p><p> Keywords: Soft and weak rocks, Small distance tunnel, Dynamic construction mechanics, Numerical simulation</p><p> 1. Introduction</p><p> The excavation and supporting proc
35、ess of tunnel is a complicated mechanical process, the differences of</p><p> construction process, excavation sequence and supporting time greatly influence on the mechanics effects of</p><p>
36、 engineering structure systematic(SHE et al., 2006). Because of the complexity of the condition of surrounding</p><p> rock, the ordinary analogy of projects is not enough in the complex lining in soft and
37、 weak rocks especially in</p><p> the tunnel engineering with small distance, so it’s necessary to conduct the mechanical simulating and analyzing</p><p> in different surrounding rock charact
38、ers according to the different forcing stages in each load case during</p><p> construction processes.</p><p> In the aspect of the research on the tunnel lining in soft and weak rocks, SUN et
39、 al. (1994) builded the three</p><p> dimension model considering the time-space effect of tunnel excavating surface. CHENG et al. (1997) analyzed</p><p> the mechanical mechanism and carrying
40、 capacity of complex lining for tunnels with FLAC, and got some useful</p><p> conclusions. JIN et al. (1996) conducted three dimension FEM (finite element method) numerical simulation to</p><p&g
41、t; the excavation processes of circle tunnel using the nonlinear viscoelastic theory. Karakus(2007)elaborated three</p><p> dimension excavating effect caused by plane strain analyses. Because the time-spa
42、ce effect could not be fully</p><p> reflected, many researchers conducted three dimension FEM elastoplastic and visco-elastoplastic analyses to</p><p> tunnel excavation(AN, 1994, XIAO, 2000
43、& ZHU et al., 1996).In the aspect of the research in the tunnel of</p><p> small distance, LIU et al. (2000) carried out the tests on Zhaobaoshan tunnel, which is the first super small</p><p&
44、gt; distance tunnel in China. WAN et al. (2000) made specifically the concept of small distance tunnel. JIN et al.</p><p> (2004) discussed the adaptability of the construction methods through the numerica
45、l simulating. YAN et al.</p><p> (2006) analyzed the mechanical characteristic and deformation rules of the supports in different construction</p><p> methods. LIU et al. (2006) introduced the
46、 design scheme of highway tunnel of small distance with 8 lanes. Most</p><p> of studies mentioned above were aimed separately at construction characters of the tunnel in soft and weak rocks</p><
47、p><b> 117</b></p><p> Modern Applied Science www.ccsenet.org/mas</p><p> and the comparison and selection of the construction schemes of small distance tunnel. The discussion&l
48、t;/p><p> combining the two aspects is less made, so it’s necessary to study the dynamic construction mechinics</p><p> characteristic of small distance tunnel in soft and weak rocks.</p>
49、<p> 2. Engineering General Situation</p><p> 2.1 Engineering Geology</p><p> The geological survey shows that the bottom, the tunnel mostly get through, is the Jurassic upper Shaximiao,
50、 and</p><p> the underlying bedrock is the interbedded of mudstone and sandstone. The strike direction of the strata intersect</p><p> the tunnel axis to 85°, the strata dip angle is abou
51、t 9°, the combination between the layers of rock is general, and</p><p> the level of rock is grade V. The groundwater is poor, and the main form of the water in tunnel is damp or</p><p>
52、 dripping. The saturated uniaxial compressive strength of mudstone Rc=4.59Mpa, Integrity factor Kv=0.65,</p><p> K1=0.2, K2=0.3, K3=0, [BQ]=219. The saturated uniaxial compressive strength of Sandstone Rc=2
53、5.49Mpa,</p><p> integrity factor Kv=0.64, K1=0.5, K2=0.2, K3=0, [BQ]=319. The surface of geological structure is very</p><p> developed, the rock body is extremely fragmented, and the block s
54、trength is not strong. So it belongs to the</p><p> typical category of the soft and weak rocks.</p><p> 2.2 Engineering Construction Method</p><p> The double side-walls constru
55、ction method is guided under the supporting role with advanced small pipe, in</p><p> order to reduce the influence of tunnel construction on the highway operations, ensure the safety of tunnel</p>&
56、lt;p> construction. The outside radius of advanced small pipe is Φ42mm, the length is 3.5m and the circumferential</p><p> spacing is 40cm. In the construction process, the excavation length is controll
57、ed strictly, the primary support is</p><p> constructed every 4m, and the 30cm thick closed loop of steel concrete is molded between the secondly lining</p><p> and primary support. The bolts
58、are the forms of hollow grouting and quincunx layout, the diameter and length</p><p> are setted as 25mm and 4.5m, the vertical and circumferential spacing are located 200cm and 80cm apart. The</p>&
59、lt;p> primary support and secondly lining are forms of the 28cm thick C20 shotcrete and 60cm thick C25 model</p><p> reinforced concrete.</p><p> 3. NumericalModel</p><p> Th
60、e tunnel length in simulating model is selected as 20m, and the model has 21850 elements, in which bolts</p><p> have 3850 elements(Fig.1). The tunnel surrounding rock is considered to be elastoplastic mate
61、rial. Because the</p><p> mechanics characteristic of the support structure is better than the surrounding rock, so it could be regarded as</p><p> elastic material. The effect of steel arch s
62、helf in shotcrete and advanced small pipe could be simulated using</p><p> equivalent method. Tab.1 is the basic mechanics parameter of the material. In order to ensure the veracity of</p><p>
63、 calculation, the model dimension can be set as : left and right are all 50m, vertical to earth surface, down is 50m.</p><p> 4 Results Analysis</p><p> 4.1 Surface Subsidence Analysis</p&g
64、t;<p> The surface subsidence should be strictly controlled, in order to ensure the safety of highway operations in the</p><p> tunnel construction. From Fig.2, the graph of the surface subsidence a
65、fter completion of the tunnel excavation, it</p><p> can be seen that the surface subsidence is approximate symmetrical distribution on the two-lane tunnel, showing</p><p> W shape. the surfac
66、e subsidence in the top of the earlier tunnel vault is largest, the value is 5.31mm, which is due</p><p> to the construction disturbance caused by the later tunnel after completion of the earlier tunnel ex
67、cavation. This</p><p> is consistent with the information and data rules of on-site monitoring. The surface subsidence in the top of the</p><p> later tunnel vault is 5.31mm, the surface subsi
68、dence near the central axis line are smaller than the top of the two</p><p> tunnel vaults, the value is only 2.87mm. Generally speaking, the surface subsidence can guarantee normal</p><p> co
69、nstruction under the safety operation of highway. The conclusion, which could also be seen from Fig.2, is that</p><p> the impact of the tunnel excavation on surface subsidence tends to be stable in the ran
70、ge of the distances of 3.5</p><p> times the diameter to the central axis, which also indicates the selection range of this simulation model is within</p><p> the error.</p><p>
71、4.2 Tunnel Deformation Analysis</p><p> As can be seen from Fig.3, the vertical subsidence of the later tunnel vault is 7.20mm, and the largest value of</p><p> the vertical subsidence, which
72、appears in the earlier tunnel vault because of the construction effect of the later</p><p> tunnel, is 7.33mm. The value of crown settlement is slightly small compared with the on-site monitoring value of&l
73、t;/p><p> the tunnels with general shallow-depth and large-span. It can be assumed that, the advanced small pipe has</p><p> played effectively a role of reinforcing rock. The invert heaving valu
74、e is relatively large, the earlier tunnel and</p><p> later tunnel are 9.87mm, 9.85mm. The analysis indicates that the vertical deformation of the tunnel surrounding</p><p><b> 118</b
75、></p><p> Modern Applied Science Vol. 4, No. 6; June 2010</p><p> rock meets the construction requirement, the initial parameters set of the tunnel structures are reasonable.</p><
76、;p> 4.3 Analysis of Forces Undertaken by Supports</p><p> As can be seen from Fig.4, the largest value which appears in the arch foot is 7.31Mpa. The on-site monitoring in</p><p> the arch
77、 foot should be strengthened in the construction process. From Fig.5, it can be found that, the axial force</p><p> of bolts is larger in the position of the vault and hance, the largest value is 42.56kN, w
78、hich meets the requirement</p><p> of the tensile strength. The most distribution of the bolts axial force is the form of “convex belly”, which is</p><p> consistent with the distribution patt
79、ern of the bolt axial force in soft and weak rocks. A small amount of bolts in</p><p> arch foot position are compression state, which maybe due to the stiffness of the primary support is too large,</p&g
80、t;<p> resulting in less deformation of arch foot and the phenomenon of invert heaving. As can be seen from Fig.6, the</p><p> stress law of the secondly lining is similar with primary support. The
81、side-wall stress is larger than the others, the</p><p> largest value is 0.2Mpa, which meets the requirement criterion in China.</p><p> 4.4 Plastic Zone Analysis</p><p> From Fi
82、g.7, it can be seen that, the plastic zone is mainly distributed in the position of the vault, arch and arch</p><p> foot, which is probably due to the side-walls undertaken excessive forces caused by doubl
83、e-sidewalls</p><p> construction method. The supports of advanced small pipe, primary support and secondly lining can prevent</p><p> effectively the further expansion of the plastic zone, the
84、 depth of plastic zone does not exceed the half of the</p><p> tunnel width, which is within the allowable range. Therefore the development of plastic zone of the tunnel does</p><p> not affec
85、t significantly the stability of the tunnel, and the tunnel is still in stable condition.</p><p> 5. Conclusions</p><p> The distribution of the tunnel surface subsidence is on the central axi
86、s basis, showing W shape, and the</p><p> settlement mainly concentrated in the range of the distance of 3.5 times the diameter to the central axis. The</p><p> support of advanced small pipe
87、can reinforce the surrounding rock, and prevent effectively the expansion of the</p><p> plastic zone between the two tunnels. From the deformation results of the surrounding rock, it can seen that, the<
88、/p><p> influence of the later tunnel excavation on the surface subsidence and tunnel deformations of the earlier tunnel</p><p> excavation is larger than the earlier tunnel impacts on the later
89、tunnel. From the results analysis mentioned above</p><p> of the surface subsidence, vertical displacement of the tunnel surrounding, undertaken forces of the supports and</p><p> the plastic
90、zone, the construction schemes of double- sidewalls is reasonable.</p><p> References</p><p> SHE Jian, & HE Chuan. (2006). 3D elastoplastic numerical simulation of surrounding rock displa
91、cement in soft</p><p> surrounding rock sectionduring construction process. Chinese Journal of Rock Mechanics and Engineering, 3,</p><p><b> 623-629.</b></p><p> SUN
92、Jun, & ZHU He-hua. (1994). Mechanical simulation and analysis of behavior of soft and weak rocks in the</p><p> construction of a tunnel opening. Rock and Soil Mechanics, 4, 20-33.</p><p>
93、 Cheng Hua, & Sun Jun. (1997). Numerical analysis of large nonlinear deformation mechanism for complex</p><p> tunnel lining in incompentent countryrock. Rock and Soil Mechanics, 4, 327-336.</p>
94、<p> JIN Feng-nian, & QIAN Qi-hu. (1996). Simulation of three-dimensional tunnel excavations. Rock and Soil</p><p> Mechanics, 3, 193-200.</p><p> M.Karakus. (2007). Appraising the m
95、ethods accounting for 3D tunneling effects in 2D plane strain FE analysis.</p><p> Tunnelling and Underground Space Technology, 22, 47-56.</p><p> AN Guan-feng. (2001). 3D-FEM for the effect o
96、f soft-soil creep on tunnel. Chinese Journal of Civel Engineering,</p><p><b> 5, 87-91.</b></p><p> XIAO Ming. (2000). Three-dimensional numerical model of construction process for
97、 underground opening.</p><p> Chinese Journal of Geotechnical Engineering, 4, 421-425.</p><p> ZHU Wei-shen, & HE Man-chao. (1996). Surrounding rock stability under complicated condition a
98、nd rock</p><p> dynamic construction mechanics. Beijing: Science Press.</p><p> LIU Yan-qing, HAN Shi-hang, LU Ru-sui, & MA Rong-tian. (2000). Experimental study on mechanical</p>&
99、lt;p> characteristics of twin tunnels with small spacing. Rock and Soil Mechanics, 5, 590-594.</p><p> WAN Ming-fu. (2000). Discussion of the tunnel surrounding rock spacing and study on the tunnel with
100、 small</p><p> distance, highway, 7, 55-58.</p><p> JIN Xiao-guang, LIU Wei, QIN Feng, & WANG Jian-hua. (2004). Excavation method analysis of little distance</p><p><b>
101、 119</b></p><p> E /MPa © 3 /KN/m c /MPa ? /° ?</p><p> Surrrounding Rockk 410 21 0.1040 29 0.38</p><p> Reiinforced Rockk 460 21 0.1290 32 0.35</p><p&
102、gt; Priimary Support 28000 23 — — —</p><p> Senncondly Liningg 31000 25 — — —</p><p><b> g, mic</b></p><p><b> sh</b></p><p> Modern Applii
103、ed Science www.cccsenet.org/maas</p><p> tunnel in freewway. Jouranal of Eailway Enngineering Socciety, 2, 63-68.</p><p> YAN Qi-xiang HE Chuan, & YAO Yong. (2006). Study on Constructtion
104、characteriistic and dynam behavior of</p><p> soft rock tunnnel. Chinese Joournal of Rock Mechanics annd Engineeringg, 3, 572-577.</p><p> LIU Hong-zhhou, & CHEN Jia. (2006). Structure des
105、ign and analysis of hallow-embeddding long-spaan</p><p> neighbourhood highway tunnnel, highway, 12, 217-222.</p><p> Figure 1. The Finite Element Analyssis Model</p><p> Table 1
106、. Baasic mechanicaal parameters oof surroundingg rock and tunnnel structures</p><p> Figure 2. The Graph of Surface Subbsidence</p><p><b> 120</b></p><p><b> th
107、</b></p><p><b> th</b></p><p> Moderrn Applied Sciience Vool. 4, No. 6; Junne 2010</p><p> Figure 3. Thhe Vertical Dissplacement of tthe Surroundinng Rock(mm)&l
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小間距隧道動(dòng)態(tài)施工力學(xué)研究.pdf
- 水平定向鉆在短距離巖石穿越中的應(yīng)用
- 2最短距離問(wèn)題
- 2最短距離問(wèn)題
- 短距離跑的技術(shù)動(dòng)作探討
- 勾股定理--最短距離問(wèn)題
- 連拱隧道的設(shè)計(jì)理論與動(dòng)態(tài)施工力學(xué)研究
- 短距離無(wú)線簽到系統(tǒng)的設(shè)計(jì).pdf
- NURBS曲面間的最短距離.pdf
- 軟弱圍巖隧道的施工力學(xué)研究.pdf
- 非對(duì)稱連拱隧道動(dòng)態(tài)施工力學(xué)模擬研究.pdf
- 基于軟光刻的短距離光互連研究.pdf
- 短距離無(wú)線電測(cè)向培訓(xùn)
- 短距離饋電系統(tǒng)實(shí)時(shí)仿真.pdf
- 短距離無(wú)線限位測(cè)控系統(tǒng)的設(shè)計(jì).pdf
- 短距離無(wú)線通信技術(shù)綜述
- 短距離無(wú)線接入技術(shù)的研究與實(shí)現(xiàn).pdf
- 短距離光纖應(yīng)變傳感系統(tǒng).pdf
- 軸對(duì)稱最短距離問(wèn)題專題
- 基于ZigBee的短距離通信技術(shù)研究.pdf
評(píng)論
0/150
提交評(píng)論