2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  中文4564字</b></p><p>  出處:第七屆亞洲氣溶膠會議論文集. 2011</p><p><b>  附錄</b></p><p><b>  英文文獻(xiàn)翻譯</b></p><p>  An Experiment on Energy

2、 Reduction of an Exhaust Air Heat Recovery Type Outdoor Air Conditioning System for Semiconductor Manufacturing Clean Rooms</p><p>  Kyung-Hoon Yoo 1 , Gen-Soo Song 1 , Hyung-Tae Kim 1 , Seung-Woo Son 2 and

3、Dug-Jun Park 3</p><p>  1 Nanoscale Contamination Control Laboratory, Korea Institute of Industrial Technology</p><p>  (KITECH), 1271-18, Sa-1-dong, Ansan-si, 426-171, Gyeonggi-do, South Korea&

4、lt;/p><p>  2 Sunglim PS Co., 1301, Namseong Plaza, 345-30, Gasan-dong, Geumcheon-gu, Seoul, 153-802</p><p>  3 Shinsung ENG Co., 404-1, Baekhyeon-dong, Bundang-gu, Seongnam-si, 463-420</p>

5、<p><b>  ABSTRACT</b></p><p>  In recent semiconductor manufacturing clean rooms, the energy consumption of an outdoor air conditioning system represents about 45 % of the total air conditio

6、ning load required to maintain a clean room environment. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery from the exhaust air is therefore use

7、fulfor reducing the outdoor air conditioning load for a clean room. In the present work, an energy-efficient outdoor air </p><p>  KEYWORDS:Semiconductor Manufacturing Clean Room, Outdoor Air Conditioning Sy

8、stem, Air Washer,Heat Recovery, Energy Reduction.</p><p>  Introduction</p><p>  For recent semiconductor manufacturing clean rooms, the energy consumption of an outdoor air conditioning (hereaf

9、ter OAC) system represents about 45 % of the total air conditioning load required to maintain a clean room environment [1,2] . In addition, there is a large quantity of exhaust air from a clean room, leading to the conse

10、quent large amount of waste heat. From an energy saving point of view, heat recovery from the exhaust air is therefore helpful for reducing the outdoor air conditionin</p><p>  Figure 1. Schematic diagram of

11、 the proposed energy efficient outdoor air conditioning system with an air washer of heat recovery function.</p><p>  So far only a few studies regarding the air washer with the heat recovery function for se

12、miconductor clean rooms have been conducted by Fujisawa et al. [3,4] , Shiroma et al. [5] and Yamamoto et al. [6] . None of the above mentioned publications seems to have been described sufficiently in detail to allow th

13、e understanding of the overall energy consumption and saving performance of the OAC system. They focused only on heat recovery equipment, not on the OAC system itself. Therefore the effect of</p><p>  Experi

14、mental Methods</p><p>  Figure 2. Schematic diagram of the present experimental apparatus for the energy-efficient outdoor air conditioning system with heat recovery function.</p><p>  Figur

15、e 2 shows the schematic diagram of the overall experimental apparatus for the proposed energy-efficient OAC system to evaluate the energy consumption and saving performance. The experimental apparatus for the simple air

16、washer OAC system with no heat recovery consisted of a clean wind tunnel, a HEPA filter, a constant temperature and humidity chamber, an air washer, an eliminator, two stage cooling coils, a reheating electric heater, a

17、humidifier and a fan. As for the experimental apparatus</p><p>  Table 1 Experimental condition of the present exhaust air heat recovery type OAC system.</p><p>  Results and Discussion</p>

18、;<p>  Figure 4 shows the experimental results of the psychrometric process for the simple air washer OAC system and the energy-efficient OAC system for the winter operation shown in Table 1. Because the two OAC s

19、ystems have the same upstream conditions, the constant temperature and humidity chamber shown in Figure 3 created the inlet condition of air washer, 16.5 o C, 9 %RH, as shown in Figure 4. It can be seen in Figure 4 that

20、the energy-efficient OAC system recovered specific enthalpy 3 kJ/kg from t</p><p>  Figure 4. Variation of the air conditioning process on psychrometric chart by heat recovery for the winter operation.</p

21、><p>  Figure 5. Variation of the air conditioning process on psychrometric chart by heat recovery for the summer operation.</p><p>  Figure 5 shows the experimental results of the psychrometric

22、process for the simple air washer and the energy-efficient OAC systems for the summer operation shown in Table 1. It can be seen in Figure 5 that the energy-efficient OAC system recovered 15.5 kJ/kg from the exhaust air,

23、 corresponding to 5.18 kW for 1000 m3 /h. Table 2 summarizes the experimental results ofrecovered heat, electric power consumption and saving for the present OAC systems forsemiconductor clean rooms with the operational&

24、lt;/p><p>  Table 2 Summary of energy consumption and heat recovery</p><p>  CONCLUSION</p><p>  Following observations are obtained from the present experimental results on the recove

25、red heat and the energy consumption and saving for the simple and energy-efficient air washer type OAC systems for semiconductor manufacturing clean rooms.</p><p>  (1) The proposed energy-efficient OAC syst

26、em recovered some of the waste heat of the exhaust air and saved the consequent electric power consumption for the winter and summer operations compared with the simple air washer OAC system.</p><p>  (2) Co

27、ntrary to the winter operation the reduced power is smaller for the summer case than the recovered heat, mainly because of the COP of chiller.</p><p>  (3) For the midterm operation the recovered heat was no

28、t able to surpass the additive power consumption due to heat recovery operation and save the energy consumption.</p><p>  ACKNOWLEDGMENT</p><p>  The present work was supported partly by Gyeongg

29、i Institute of Science and Technology Promotion and partly by Korean Small and Medium Business Administration.</p><p>  REFERENCES</p><p>  [1] Hu, S.C.; Wu, J.S.; Chan, D.Y.L.; Hsu, R.T.C.; Lee

30、, J.C.C. Energy and Buildings 2008, 40,1765-1770.</p><p>  [2] Tsao, J.M.; Hu, S.C.; Chan, D.Y.L.; Hsu, R.T.C.; Lee, J.C.C. Energy and Buildings 2008, 40,1387-1393.</p><p>  [3] Fujisawa, L.; Mo

31、riya, M.; Yosa, K.; Ikuta, M.; Yamamoto H.; Nabeshima. Y. In Proc. of the 19th Annual Technical Meeting on Air Cleaning and Contamination Control; Japan Air Cleaning Association: Tokyo, 2001; pp 166-168 (in Japanese).<

32、;/p><p>  [4] Fujisawa, S.; Moriya, M.; Yosa, K.; Nishiwaki, S.; Yamamoto H.; Katsuki, T.; Nabeshima,Y.; Oda, H. In Proc. of the 20th Annual Technical Meeting on Air Cleaning and Contamination Control; Japan Ai

33、r Cleaning Association: Tokyo, 2002; pp 162-165 (in Japanese).</p><p>  [5] Shiroma, S.; Tomita, H.; Yoshizaki, S.; Suzuki, K. In Proc. of the 20th Annual Technical Meeting on Air Cleaning and Contamination

34、Control; Japan Air Cleaning Association: Tokyo,2002; pp 260-262 (in Japanese).</p><p>  [6] Yamamoto H.; Katsuki, T.; Fujisawa, S.; Yosa, K.; Nishiwaki, S.; Nabeshima, Y.; Oda, H. In Proc. of the 20th Annual

35、 Technical Meeting on Air Cleaning and Contamination Control; Japan Air Cleaning Association: Tokyo, 2003; pp 151-154 (in Japanese).</p><p><b>  譯文</b></p><p>  空調(diào)排氣熱回收實驗半導(dǎo)體車間熱回收型潔凈空

36、調(diào)系統(tǒng)</p><p>  Kyung-Hoon Yoo 1 , Gen-Soo Song 1 , Hyung-Tae Kim 1 , Seung-Woo Son 2 and Dug-Jun Park 3</p><p>  1 Nanoscale Contamination Control Laboratory, Korea Institute of Industrial Technol

37、ogy</p><p>  (KITECH), 1271-18, Sa-1-dong, Ansan-si, 426-171, Gyeonggi-do, South Korea</p><p>  2 Sunglim PS Co., 1301, Namseong Plaza, 345-30, Gasan-dong, Geumcheon-gu, Seoul, 153-802</p>

38、<p>  3 Shinsung ENG Co., 404-1, Baekhyeon-dong, Bundang-gu, Seongnam-si, 463-420</p><p><b>  摘要</b></p><p>  近年來半導(dǎo)體制造清潔房間,因為潔凈空調(diào)系統(tǒng)中還有大量的排氣從潔凈室內(nèi)排出,室外空調(diào)系統(tǒng)的能源消費占了大約45%的總空調(diào)負(fù)荷用來維持

39、潔凈室內(nèi)的潔凈等級要求。從節(jié)能的角度來看,從空調(diào)排氣中進(jìn)行熱回收可以減少潔凈室的空調(diào)負(fù)荷。目前,提出了一個有助于戶外空調(diào)系統(tǒng)節(jié)能的方案既通過利用空氣過濾器對空調(diào)排氣進(jìn)行熱回收的方法來減少室外空調(diào)負(fù)荷。模擬的室外空調(diào)系統(tǒng)組成部分包括:預(yù)熱器,一個空氣凈化器,兩級冷卻線圈、加熱線圈,插入到空氣凈化器和一個濕式除塵器之間的加濕器和兩排熱回收冷卻線圈。實驗室模擬新風(fēng)量1000 m3/h,該實驗結(jié)果顯示該模擬系統(tǒng)的夏季和冬季的空調(diào)運(yùn)行工況和只具有

40、一個簡單的空氣凈化器的室外空調(diào)系統(tǒng)相比要更加節(jié)能。</p><p>  關(guān)鍵詞:半導(dǎo)體制造潔凈室、室外空調(diào)系統(tǒng),減少空氣墊圈、熱回收、能源。</p><p><b>  實驗過程介紹</b></p><p>  近年來半導(dǎo)體制造清潔房間,因為潔凈空調(diào)系統(tǒng)(以下OAC)中還有大量的排氣從潔凈室內(nèi)排出,室外空調(diào)系統(tǒng)的能源消費占了大約45%的總空調(diào)負(fù)

41、荷用來維持潔凈室內(nèi)的潔凈等級要求。此外,還有大量的廢氣從潔凈室空氣,導(dǎo)致隨之而來的大量的廢熱。從節(jié)能的角度來看,從空調(diào)排氣中進(jìn)行熱回收有助于減少戶外潔凈室的空調(diào)負(fù)荷。近年來,空氣墊圈已經(jīng)在OAC系統(tǒng)中使用,用于半導(dǎo)體制造潔凈室控制濕度,同時去除引入室內(nèi)的新風(fēng)中的懸浮粉塵和氣態(tài)污染物如NH3、SOX、NOX和有機(jī)氣體。與此同時,由于排氣攜帶化學(xué)有毒氣體物質(zhì),這些排氣要經(jīng)過濕式洗滌器的處理才能排放到大氣中。在濕式洗滌器處理排氣的過程中總會伴

42、有排氣與清潔用水之間的換熱過程。這部分被轉(zhuǎn)移的熱量應(yīng)該收集并加以利用來加熱或冷卻室外空氣,同時需要考慮的是洗滌水對新風(fēng)的間接污染問題。</p><p>  圖1, 熱回收室外空調(diào)系統(tǒng)中空氣凈化器原理圖</p><p>  到目前為止只有Fujisawa[3,4], Shiroma [5]和Yamamoto[6]等少數(shù)人研究有關(guān)半導(dǎo)體潔凈室空調(diào)系統(tǒng)中空氣洗滌器的熱回收功能。以上提到的出版物似

43、乎已經(jīng)足夠詳細(xì)描述并有助于整體理解OAC系統(tǒng)能源消耗和其節(jié)能性。他們只關(guān)心熱回收設(shè)備,而不是OAC系統(tǒng)本身。因此其效果受到空調(diào)處理過程的約束如送風(fēng)狀態(tài)和加熱/冷卻線圈的組合對OAC系統(tǒng)節(jié)能性的影響因此節(jié)能OAC系統(tǒng)的設(shè)計需要將以上因素考慮在內(nèi)。在目前的工作,是基于Fujisawa[3,4]和Yamamoto[6]在曾經(jīng)的工作中對節(jié)能OAC系統(tǒng)通過利用空氣過濾器的回收功能以減少室外空調(diào)負(fù)荷這一課題的研究基礎(chǔ)之上。提出OAC系統(tǒng)主要由空氣過

44、濾器空氣預(yù)熱器、空氣過濾,兩級冷卻線圈、加熱線圈,一個加濕器,和插入到空氣凈化器和一個濕式除塵器之間的加濕器和兩排熱回收冷卻線圈,如圖1所示。實驗室模擬新風(fēng)量1000 m3/h,該實驗結(jié)果顯示該模擬系統(tǒng)的夏季和冬季的空調(diào)運(yùn)行工況和只具有一個簡單的空氣凈化器的室外空調(diào)系統(tǒng)相比要更加節(jié)能。</p><p><b>  試驗方法</b></p><p>  圖2, 節(jié)能室外

45、空調(diào)系統(tǒng)熱回收功能實驗裝置的原理圖</p><p>  圖2顯示了用來評估整個節(jié)能OAC系統(tǒng)能源消耗和其熱回收性能的實驗裝置的原理圖。簡單的實驗儀器無熱回收空氣墊圈OAC系統(tǒng)由一個干凈的風(fēng)洞,高效過濾器,恒溫恒濕室,一個空氣洗滌器,消除器,兩級冷卻線圈、加熱電加熱器、加濕器和一個風(fēng)扇。至于實驗裝置的節(jié)能OAC系統(tǒng)在上述簡單系統(tǒng)中加入了空氣洗滌器OAC系統(tǒng)熱具有回收功能的濕式洗滌器,一個中間換熱器,主要和次要水泵、

46、空氣洗滌器中的兩個冷卻/加熱線圈和一個小潔凈室如圖2所示。表1顯示了實驗條件的節(jié)能OAC系統(tǒng)熱回收功能??諝庀礈炱魇前惭b在清潔風(fēng)洞中的截面尺寸為0.33X0.33m2,由4排48個噴嘴分成兩個模塊組成。使用噴嘴外直徑為1/8,對壓力為0.7 MPa的自來水,同時進(jìn)行平行對噴。節(jié)能OAC系統(tǒng)的冷卻線圈插入在兩個空氣洗滌器模塊之間,用來在濕式洗滌器中回收通過中間換熱器的排氣的余熱,用它來加熱或冷卻的室外空氣,如圖2所示。至于再熱盤管和蒸汽加

47、濕器一個電加熱器和一個電極式蒸汽加濕器分別使用代替化石燃料鍋爐統(tǒng)一測量電力。電力安裝傳感器來測量電力消耗如圖2所示。ALMEMO MA5990-2數(shù)據(jù)記錄器和傳感器被安裝在風(fēng)洞測量溫度和相對濕度。溫度</p><p>  表1  實驗條件下的排氣熱回收型OAC</p><p><b>  實驗結(jié)果與討論</b></p><p>  圖

48、3顯示簡單OAC系統(tǒng)和節(jié)能OAC系統(tǒng)在冬季運(yùn)行工況下的空氣熱濕處理過程(圖2所示)。因為兩個OAC系統(tǒng)有相同的條件下的恒溫恒濕室空氣洗滌器的進(jìn)風(fēng)條件,16.5 ℃,9% RH(表1所示)。在圖3中可以看到,節(jié)能OAC系統(tǒng)從排氣中回收的比焓為3kJ /公斤。相應(yīng)的回收熱量1.01 kw 1000m3/h。</p><p>  圖3,節(jié)能OAC系統(tǒng)在冬季工況下的空氣處理過程焓濕圖</p><p&g

49、t;  圖4,節(jié)能OAC系統(tǒng)在夏季工況下的空氣處理過程焓濕圖</p><p>  圖4顯示了節(jié)能OAC系統(tǒng)在夏季工況下的空氣處理過程焓濕圖。圖4中可以看出節(jié)能OAC系統(tǒng)從排氣中回收15.5 kJ /kg的能量,對應(yīng)節(jié)約5.81kw 1000 m3/h的電量。表2總結(jié)了實驗結(jié)果既回收熱量,電力消費回收能量之間的關(guān)系,當(dāng)前OAC半導(dǎo)體潔凈室系統(tǒng)的運(yùn)行環(huán)境如表1。表中可以看出,冬季和夏季空調(diào)采用熱回收措施,明顯減少電力

50、消耗。也通過對比冬季和夏季空調(diào)的運(yùn)行工況與節(jié)能效果可發(fā)現(xiàn),雖然夏季的熱回收效果是比冬季的熱回收效果要好很多,但是節(jié)省的電量夏季是小于冬季的。另外夏季運(yùn)行工況下的空調(diào)系統(tǒng)對電力的節(jié)約量相對于其熱回收的能量要小,另一個主要影響因素是冷水機(jī)組的COP。另一方面,至于過渡季空調(diào)熱回收并能熱不減少電力消耗因為恢復(fù)太小的熱量超過由于在空氣洗滌器中插入的冷盤產(chǎn)生的壓降導(dǎo)致一級/二級泵產(chǎn)生的附加能耗。</p><p>  表2能

51、耗和回收熱量關(guān)系表</p><p><b>  總結(jié)</b></p><p>  觀察對比節(jié)能OAC系統(tǒng)與普通OAC系統(tǒng)在不同運(yùn)行工況下得出的實驗數(shù)據(jù)可得到以下結(jié)論: (1)節(jié)能OAC系統(tǒng)相較于普通OAC系統(tǒng),在冬,夏兩季的運(yùn)行工況下,能夠明顯的降低電量消耗;(2)節(jié)能OAC系統(tǒng)夏季工況下回收能量高電力節(jié)約較小,二冬季工況下回收能量較小但節(jié)電效果明顯,究其原因是受

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論