外文翻譯--油罐火災中的泡沫使用效率_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  油罐火災中的泡沫使用效率</p><p>  D. 海德 , A. .羅德里格斯, D. 斯密斯</p><p>  [摘要]:在用于儲存易燃液體的浮頂罐上,防火用的移動式泡沫滅火器有替代固定式滅火器的趨勢,而且這一趨勢正在增強。作者研究了使用泡沫方式對泡沫效率的影響,同時比較了:兩種普通蛋白泡沫、普通輕水泡沫和大家熟知的F.P. 70.氟蛋白泡沫的使用效率。<

2、/p><p>  流散火災對蛋白泡沫的滅火性能的影響已經在多篇論文中論述解釋了。所有的情況都是:泡沫平緩地被施放到燃燒物的表面。Tuve 和 Peterson在他們自己寫的論文中很方便的得出一些結論,他們總結出了一下幾點結論:</p><p>  ?泡沫的膨脹性和密度可以承受一定的效率變化,只要它超過最小臨界值。</p><p>  ?泡沫的黏度和它的水吸出率是密切相關

3、的。</p><p>  ?在泡沫的應用中,需要0.02美制加侖每平方英尺的泡沫含水量用以平衡后大火中產生的熱量。</p><p>  協(xié)同救火研究組織從French等人所著的論文中也總結出了相似的結論。</p><p>  所有的這些工作是從模擬將泡沫易平緩的方式通過分布在油罐頂部的噴頭施放到燃燒的油料表面這一應用中得出的。</p><p>

4、;  [關鍵詞]:油罐;火災;泡沫;研究影響 </p><p><b>  現(xiàn)代儲存技術的影響</b></p><p>  近十年,用于儲存A類易燃液體的油罐正朝著沒有固定式泡沫滅火器的大直徑浮頂罐的趨勢發(fā)展。</p><p>  固定泡沫滅火器的使用經驗表明,在嚴重的大火中滅火器是極易損壞的,同時,現(xiàn)在又有這樣一個趨向,既趨向于使用大容量的

5、泡沫滅火器來保護油罐。它們有能力投送超過600美制加侖的泡沫與水的混合物。</p><p>  從滅火器或其它移動滅火設備中產生的泡沫顯然不能緩和地被施放到儲罐中的的燃料表面,盡管還沒有獲取到定量的信息以致使我們還不理解為什么在這種條件下滅火效率會被削弱。</p><p><b>  實驗室測試</b></p><p>  一個火域面積只有0.

6、78平方英尺的小型實驗室測試被建立,測試中,泡沫由實驗室的泡沫產生器產生,并被直接噴射到燃燒著的90號汽油表面。調整噴射孔以便產生一個8.2米/秒流速的恒定流量,這與正常的設備可獲得的流量是相似的。泡沫以不同的速率試驗,臨界應用率將從一張把要求的滅火時間與泡沫液的使用率進行對照的圖中得到(圖一)。</p><p>  我們發(fā)現(xiàn)臨界應用率會受到燃料溫度的巨大影響,為了測試這一點,測試是在超過了所允許的15分鐘預燒后

7、實施的。圖2中顯示燃料的溫度曲線在不同的預燒時間下是不同的。試驗使用了4%的泡沫溶液,這種泡沫溶液由兩種可獲得的已商業(yè)化的水解蛋白和一種最新發(fā)展的F.P. 70氟蛋白組成。表一給出了泡沫的性能數(shù)據(jù)。在圖3中繪制了三種泡沫的臨界應用率與預燒時間的對照情況,通過對照下面這些觀點是顯而易見的:</p><p>  ?三種泡沫的臨界應用率都是隨預燒時間的增加而增加的。</p><p>  ?即使是

8、在短的預燒時間下,以直接噴射到燃料表面的方式使用的蛋白A泡沫和蛋白B泡沫的臨界應用率也比以緩和方式釋放到燃料表面時得到的臨界應用率高。</p><p>  ? F.P. 70氟蛋白泡沫比水解蛋白泡沫表現(xiàn)更優(yōu)越。</p><p><b>  燃料溫度測量</b></p><p>  由于使用的是小尺寸的容器,在實驗室獲得的溫度曲線不被認為是與在大

9、型容器中獲得的曲線非常接近的。這使得人們決定進行戶外的更大型的火災,并在沒有進行泡沫測試前測量它溫度曲線圖。</p><p>  一份由Burgoyne 和 Katan編寫的論文提供了有用的信息,這信息就是一個裝有低標號汽油的22英尺直徑的油罐的表面溫度曲線。結果顯示,一個大約90攝氏度(194華氏度)的熱油層或說“熱區(qū)”會在燃燒的油品下面形成。蒸餾試驗表明,在該溫度下會蒸餾出19%的燃料。熱區(qū)以每小時24到36

10、英寸的速率形成,并且在熱區(qū)和冷油之間存在劇烈地溫度變化。</p><p>  TABLE 1.測試中使用的泡沫的屬性</p><p>  -------------------------------------------------------------------------------------</p><p>  臨界剪切應力 析出25%水份

11、的時間</p><p>  泡沫類型 膨脹系數(shù) (dynes/cm2) (分) </p><p>  -------------------------------------------------------------------------------------</p><p>  水解蛋白

12、A 8 250 3-5 </p><p>  水解蛋白B 8 370 2-5 </p><p>  F.P.70氟蛋白 8 250

13、 2-4 </p><p>  -------------------------------------------------------------------------------------</p><p>  在22英寸直徑的罐中第一次使用常規(guī)90號汽油進行了測試。絕熱石棉是用來減少火焰的熱量通過罐壁傳遞的。同時在最小干擾的前提下一個固定流量的設備被允許使用,從而使燃燒

14、的燃料上保持一個恒定的空距。大火持續(xù)了30分鐘,在液面以下每隔1英寸檢測燃料的溫度。也對直徑4.8英尺的罐進行了試驗,但因為這個原因,在燃燒過程中燃料的液面沒有被保持在不變的位置。在大型罐中,當罐壁對傳熱的影響不那么明顯時,絕熱材料就不再使用。在兩組罐中的實驗結果在表4中以圖表的形式顯示。小罐中 70攝氏度(158華氏度)的熱區(qū)和大罐中80攝氏度(176華氏度)的熱區(qū)都被記錄了下來。實驗中使用了兩個不同批次的燃料,蒸餾實驗顯示了熱區(qū)在每

15、種情況下所對應的20%的蒸餾溫度。這些很好的應證了Burgoyne 和 Katan所獲得的結果。在兩個罐之間存在一些可以忽略不記的差別,這結果還說明,一個12英寸深的熱區(qū)在燃燒30分鐘后以1/2英寸/分鐘的最終速率形成。</p><p>  18平方英尺火災的測試</p><p>  設計這一系列的測試是為了大規(guī)模的考證在很深的燃料大火中強力使用泡沫的影響,測試是在下列情況下進行的:<

16、;/p><p>  ?短預燒時間(2分鐘)并且在燃料低溫的情況下;</p><p>  ?長預燒時間(30分鐘)并且燃料溫度處于70到80攝氏度的情況下。</p><p>  在這些測試中,泡沫具有表1所示范圍的理化特性,測試時這些泡沫被直接噴射到含有150加侖(18英深)90號汽油的直徑18平方英尺的有關火災中。臨界應用率從表2中得出并被顯示出來。</p>

17、<p>  TABLE 2. 18平方英尺火災中的臨界應用率</p><p>  -------------------------------------------------------------------------------------</p><p>  臨界應用率 (gpm/ft2) </p><p>  -----------

18、-----------------------------------------------</p><p>  泡沫種類 2分鐘的預燒時間 30分鐘的預燒時間</p><p>  -------------------------------------------------------------------------

19、------------</p><p>  水解蛋白A 0.07 0.17</p><p>  水解蛋白B 0.07 0.17</p><p>  F.P.70氟蛋白

20、 0.03 0.06</p><p>  -------------------------------------------------------------------------------------</p><p>  人們將看到,觀測到的實驗數(shù)據(jù)表明了一個相似的趨勢,就像從長時間預燒中獲得的臨界速率的

21、顯著增加一樣。然而。這個從實驗室火災中獲得的值,說明了規(guī)模效應的重要性。再者,A類和B類之間的顯著差異在大型火災測試中基本消失了。據(jù)說這種規(guī)模效應部分原因是油罐壁影響了泡沫流的路徑從而影響了泡沫層的形成。在實驗室小直徑的火盤中,泡沫流迅速順著容器壁擴散并在其上面形成一個泡沫層,并且構成一個明顯深度。在大型火災中,形成一個泡沫層非常的不容易,即便是當泡沫覆蓋在了燃料的表面時也很難構建起一個不透氣的泡沫層。這種應用方式的跡象顯示,自從油罐實

22、際保護的問題受到關注后,規(guī)模效應的現(xiàn)象變得重要了。因此在更大的火災面積中(400平方英尺)進行了一小部分的測試,以進一步關注并檢驗規(guī)模效應。 </p><p>  400英尺火災面積的測試</p><p>  因為會導致測試區(qū)的煙霧污染問題,所以不可能開展大型火災長時間預燒的測試。實驗

23、中,因此,限制在應用泡沫從一個標準的泡沫產生器噴嘴噴到400加侖常規(guī)汽油產生的400平方英尺火災中去(大約2英寸深)。在試驗中的預燒時間是2分鐘。噴嘴提供了一個不斷排放40美制加侖/分鐘密度0.10美制加侖/平方英尺的泡沫,泡沫盡量直接噴向測試火中心。所得結果見表3。</p><p>  表3. 18平方英寸測試火的測試結果</p><p>  從實驗室的實驗的結果和18平方英尺火災來看

24、,可以預見的一點是:在測試條件下,使用兩個流量為0.10gpm/平方英尺的噴嘴,400平方英尺的火災是容易控制的。其中的一個不同點是,400平方英尺面積的測試火災只有2英寸。燃料深度常用來與火勢更小但油層更深的火災的做比較。它可以是被認為可以解釋實驗室小型測試火與18平方英寸測試火結果的不同點的規(guī)模效應的延伸。</p><p><b>  輕水</b></p><p>

25、;  美國海軍研究實驗室調查了新的發(fā)泡劑促進了輕水復合泡沫的發(fā)展。有許多報告是關于它在飛機墜毀引起的淺層油品火災中的應用表現(xiàn)的。不過沒有關于深層油品火災的測試結果報告。因此,在測試程序中進行了一項測試:在一個經過了30分鐘預燒的18平方英尺的測試大火中使用F.P. 70氟蛋白,以一個接近臨界流量的流量進行。結果在表4中與在測試程序中的另一項測試發(fā)泡劑的結果一起給出。</p><p>  表4.18平方一尺17英寸

26、深的常規(guī)90號汽油預燒時間30分鐘的實驗結果(泡沫以0.07gpm/平方英尺的速率直接噴射到著火區(qū)域的中心位置)。</p><p>  *雖然輕水泡沫比F.P. 70泡沫能更迅速的控制火災,但在這兩種情況下,時間長的滅火時間都是由于火焰持續(xù)性的靠近高溫罐壁。</p><p><b>  結 論</b></p><p>  從這篇論文的描述中我

27、們可以得到一下結論:</p><p>  ? 與緩和地將常規(guī)泡沫覆蓋到A類易燃油品表面相比,用泡沫強行滅火的效率極大的降低的。</p><p>  ? 在汽油罐發(fā)生大火的過程中,可能形成一個70°C到80 ° C的高溫油層區(qū)。這情況下普通的蛋白基泡沫的效率是比較低的,除非能緩和的將泡沫覆蓋到油品表面,同時如果按目前建議的泡沫量(0.1gpm/平方英尺)使用,將不會對

28、火災起到任何作用。</p><p>  ? 400平方英尺試驗結果表明,即使在短時間的預燒下,泡沫的使用形式和較高值的臨界應用率都存在規(guī)模效應。此外,還需要進行在該規(guī)模和更大規(guī)模下的更深層次油品在長時間預燒的試驗。</p><p>  ? 用F.P.70氟蛋白和輕水制造的泡沫,適合于目前建議的低速率、快速熄滅試驗火甚至深層次的高溫油層區(qū)已經形成的條件下。</p><

29、p><b>  參考文獻</b></p><p>  [1] Tuve,RL和彼得森.一些機械泡沫滅火的研究,他們對石油火災.3725報告.1950年8月23日,美國海軍研究實驗室[2]法國,RJ,欣克利,特等.的泡沫表面用汽油火災應用.火災研究注意第21號,1952年,Scientiiic和工業(yè)研究和消防局的聯(lián)合研究組織消防處。[3]弗萊,櫻和法語的RJ.使用的機械泡沫發(fā)生器.應

30、用化學研究所碩士論文. 1(1951).425-429頁 [4]伯戈因,JH和咯痰.火災在石油產品開放坦克:一些基本方面.石油學院學報. 33(1947),第158頁[5] Tuve,RL等.一種新型氣體和易燃液體火災安全滅火劑.6057報告.1964年3月13日.美國海軍研究實驗室.[6] Tuve,RL等. 全尺寸火災模擬試驗研究'評價者'和蛋白型泡沫.6573報告.1967年8月15日.美國海軍研究.[

31、7] Fittes,DW和納什.光水.第170-171.</p><p>  Foam - - - Its Efficiency In Tank Fires</p><p>  D. H I R D , A. RODRIGUEZ, and D. S M I T H </p><p>  [Abstract]: The increasing use of float

32、ing roof tanks for the storage of flammable liquids has given rise to a tendency toward using foam monitors for fire protection instead of fixed applicators.The authors studied the effect of application methods on foam e

33、fficiency and compared the effectiveness of two protein-based foams, Light Water, and a fluoroprotein foam known as F.P. 70. </p><p>  The effect of foam properties on the fire fighting ability of protein fo

34、am on bulk fuel storage fires has been examined in a number of reports. In all cases, foam was applied gently onto the fuel surface. The results obtained are conveniently summarized in a report by Tuve and Peterson. 1 Th

35、ey concluded the following: </p><p>  ? That the expansion or density of a foam has little bearing on its efficiency as long as it exceeds a critical minimum value; </p><p>  ? That foam viscosi

36、ty and its rate of water precipitation are closely related; and </p><p>  ? That a surface application density of 0.02 gpm/ft2. of water-in-foam is needed to equilibrate the heat produced by the test fire. &

37、lt;/p><p>  Simila results were obtained by the Joint Fire Research Organization and are summarized in a paper by French et al.2</p><p>  All this work, carried out by applying foam gently to the s

38、urface of the burning fuel, simulated the type of application obtained with the fixed, top applicators prevalent at the time. </p><p>  [Keywords]:tanks;fire;foam ;studied the effect</p><p>  EF

39、FECT OF MODERN STORAGE METHODS</p><p>  Recent trends in the storage of Class A flammable liquids have been towards much larger diameter floating roof tanks without provision for fixed, foam applicati

40、on. Experience shows that fixed foam applicators are </p><p>  *Imperial gallons are used throughout this paper . </p><p>  A British Institute of Petroleum classification for flammable l

41、iquids having closed cup flash points below 73° F (22.8° C), which is comparable to Class IA and Class IB materials as defined in the Flammable Liquids Code (NFPA No. 30). highly vulnerable to damage in

42、the event of a serious outbreak of fire, and there is now a tendency towards the use of high-capacity foam monitors for the protection of storage tanks. These are capable of delivering more than 600 gpm of water-

43、in-f</p><p>  Foam produced from monitors or from other types of mobile equipment obviously cannot be applied gently to the fuel surface in a storage tank, and although there has been an understanding that t

44、here would be some loss in efficiency under these conditions, no quantitative information is available .The work described in this paper was undertaken in an attempt to provide such quantitative information . </p&g

45、t;<p>  LABORATORY TESTS</p><p>  A small-scale laboratory test having a fire area of 0.78 ft2 was set up in which foam produced in a laboratory foam generator3 was applied as a straight stream o

46、nto burning 90 octane gasoline. The size of the orifice was adjusted with changes in application rate to give a constant stream velocity of 8.2 m/sec ,which is similar to that obtained with conventional equipment

47、. Foam was applied at a series of rates, and critical application rates were determined by plotting the time req</p><p>  It was found that the critical application rates were greatly affected by changes

48、in the temperature of the fuel, and to examine this, tests were performed in which pre burn times of up to 15 min were allowed, The temperature profile in the fuel at different preburn times is shown in Figure 2. The

49、tests were made using 4 per cent solutions of two commercially available hydrolyzed protein foams and a recently developed fluoroprotein foam (F.P. 70). Table 1 gives the foam properties obtained </p><p> 

50、 ? The critical application rate for all three foams increased as the preburn time increased. </p><p>  ? Even with short preburn times, the critical application rates for foams A and B, applied as a straigh

51、t stream to the fuel surface,were appreciably higher than the results obtained from gentle application to the fuel surface. 1.2 </p><p>  ? The fluoroprotein foam, F.P. 70, appeared to have a performance su

52、perior to the hydrolyzed protein foams. </p><p>  Preburn times </p><p>  Because of the small size of vessel used,the fuel temperature gradient obtained with the laboratory fires was not t

53、hought to relate cIosely to the temperatures obtained with fires in larger tanks. It was decided to measure the subsurface temperature profile on larger outdoor fires before carrying out tests with foam. </p><

54、;p>  A report by Burgoyne and Katan4gives useful information on the subsurface temperatures obtained with fires in a 22-in. diameter tank containing low grade gasoline . Their results showed that a layer of hot fuel o

55、r a "hot zone" was formed under the burning surface with a temperature of about 90 ° C (194 ° F). Distillation tests showed that this temperature would give a 19 per cent distillation of the fuel used

56、.The rate at which the depth of the hot zone increased was between 24 and 36 in./hr , an</p><p>  TABLE 1. Properties o/the Foams Used in the Fire Tests</p><p>  --------------------------------

57、-------------------------------------------------------------------------------------</p><p>  Critical shear 25 per cent drainage </p><p>  stress time </p><p>  Type o

58、f foam Expansion (dynes/cm2) (min) </p><p>  ---------------------------------------------------------------------------------------------------------------------</p><p&

59、gt;  Hydrolyzed protein A 8 250 3-5 </p><p>  Hydrolyzed protein B 8 370 2-5 </p><p>  Fluoroprotein foam F.P. 70 8

60、 250 2-4 </p><p>  ---------------------------------------------------------------------------------------------------------------------</p><p>  O Hydrolizod protein A &l

61、t;/p><p>  [3 Hydrolized protein B </p><p>  A Fluoroprotein foom FP-70 </p><p>  Tests with regular grade 90 octane gasoline were irst made using a 22-in. diameter tank. Asbestos

62、 insulation was used to reduce heat transfer from the flames to the fuel via the sidewalls, and a constant head device allowed the addition of fuel to the base of the tank with minimum disturbance so that constant ullage

63、 could be maintained during burning. Fires of 30-min duration were used, and fuel temperatures were measured at 1-in. intervals below the surface. Experiments were also carried out us</p><p>  TESTS ON 18-FT

64、 2 FIRE </p><p>  This series of tests was designed to investigate, on a larger scale, the effects of forceful foam application on a deep fuel fire under the following conditions: </p><p>  ? Sh

65、ort preburn times (2 min) and low fuel temperatures, and </p><p>  ? Long preburn times (30 rain) and fuel temperatures in the range of 70°C to 80° C. </p><p>  In these tests, foam ha

66、ving properties in the range shown' in Table 1 </p><p>  was applied as a straight stream to the center of the fire in an 18-ft ~ tank containing 150 gal (17 in. deep) of 90 octane gasoline. The critical

67、 rates of application were determined and are shown in Table 2. </p><p>  It will be seen that trends similar to those indicated by the laboratory results were observed, as significant increases in the criti

68、cal rates of application were obtained for the longer preburn times. However, the values obtained for the critical rates were greater than the corresponding values obtained from the laboratory fires, indicating the impor

69、tance of some scale effect. Furthermore, the apparent large differences shown between types A and B in the laboratory tests largely disappear in th</p><p>  TESTS ON 400 FT2 Free </p><p>  Becau

70、se of smoke pollution problems in the area where the tests weremade, it was not possible to carry out tests with long preburn times on the larger fires. The tests, therefore, were limited to applying foam from a standard

71、 foam-making nozzle to a 400-ft2fire of 400 gal of regular grade gasoline (approximately 2 in. deep). A 2-min preburn time was used in these tests. The nozzle provided a constant discharge of 40 gpm, an application densi

72、ty of 0.10 gpm/ft2, which was directed as far as possib</p><p>  TASLE 3. Results of the 18-ft2Fire Test </p><p>  From the results of the laboratory tests and the 18-ft2 fire, one might have ex

73、pected that the 400-ft 2 test fire would have been controlled readilyunder test conditions by the two hydrolyzed protein foam compounds applied at an application density of 0.10 gpm/ft 2. One difference in the400-ft2 tes

74、t fire was that only a 2-in. fuel depth was used as compared with deeper fuel layers on the smaller fires. It could, however, be an extension of the scale effect that was thought to explain the differe</p><p&g

75、t;  LIGHT WATER </p><p>  Investigations of new foaming agents at the U.S. Naval Research Laboratory led to the development of Light Water foam compound. There are a number of reports 5-7 relating its perfor

76、mance on shallow fuel layers associated with its use on aircraft crash fires. There are no test results reported on its performance on deep fuel layers; therefore, a test was made on the 18-ft2 test fire with a 30-min pr

77、eburn time at an application rate near the critical rate for the fluoroprotein foam F.P. 70 used in</p><p>  TABLE 4. Results of 18 ft2 Fire Test of Regular Grade 90 Octane Gasoline, 17 in. Deep, after 30 ra

78、in Preburn Time (Foam Applied in Straight Stream to Center of Fire Area at a Rate of 0.07 gpm/ft2)</p><p>  *Although Light Water had a more rapid control time than F.P. 70, the long extinction times in both

79、 cases were due to persistence of flames near the hot tank wall.</p><p>  CONCLUSIONS</p><p>  The following conclusions were drawn from the work described in this paper. </p><p>  

80、? Where normal protein-based foams are applied forcibly to fires in Class A flammable liquids, their efficiency is greatly reduced compared with gentle application to the surface. </p><p>  ? Under operati

81、onal conditions in the event of fire in a fuel storage tank containing gasoline, a hot zone at 70°C to 80 ° C is likely to form. Under these conditions, normal protein-based foams are even less efficient, unl

82、ess applied gently, and foam application at the present recommended rates (0.1 gpm/ft 2) would have no effect on the fire. </p><p>  ? Results on the 400-ft2 test fire suggest that there could be scale eff

83、ects for this type of foam application and point to higher values of the critical rate of application even for short preburn times. Further work is required at this and larger scales on fires in deep fuel layers with l

84、ong preburn times in metal tanks. </p><p>  ? Foams made from the fluoroprotein foam F.P.70 and Light Water, applied at rates below the present recommended rates of application, extinguished the test fires

85、rapidly, even when a deep hot zone had been formed.</p><p>  REFERENCES</p><p>  [1] Tuve, R. L. and Peterson, H. B., "A Study of Some Mechanical Foams and Their Use for Extinguishing Petr

86、oleum Fires," NRL Report 3725, 23 Aug. 1950, U.S. Naval Research Laboratory </p><p>  [2] French, R. J., Hinkley, P. L., and Fry, J. F., "The Surface Application of Foam to Petrol Fires," Fire

87、 Research Note No. 21, 1952, Department of Scientiiic and Industrial Research and Fire Offices' Joint Fire Research Organization. </p><p>  [3] Fry, J. F. and French, R. J., "A Mechanical Foam Gener

88、ator for Use in Labora-tories," Journal of Applied Chemistry, Vol. 1 (1951), pp. 425-429. </p><p>  [4] Burgoyne, J. H. and Katan, L. L., "Fires in Open Tanks of Petroleum Products: Some Fundamenta

89、l Aspects," ,Journal of the Institute of Petroleum~ Vol. 33 (1947), p. 158. </p><p>  [5] Tuve, R. L., et al, "A New Vapor Securing Agent for Flammable Liquid Fire Extinguishment," NRL Report

90、6057, 13 March 1964, U.S. Naval Research Laboratory. </p><p>  [6] Tuve, R. L., et al, "Full-scale Fire Modelling Test Studies of 'Light V~rater ' and Protein Type Foams," NRL Report 6573,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論