2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  中文3940字</b></p><p>  Procedure for performing flatness measurement</p><p>  Flatness measurements are performed to check the flatness of CMM tables and surface plates.

2、It determines whether any significant peaks or troughs exist and quantifies them. If these errors are significant then remedial work, such as lapping, may be required.</p><p>  To understand the basic princi

3、ples and techniques of flatness measurement refer to:</p><p>  The principles of flatness measurement.</p><p>  Standard methods of assessing flatness.</p><p>  Principle of flatnes

4、s measurement</p><p>  The flatness measurement kit is used to measure flatness. The angular interferometer is attached to the turning mirror and the angular reflector is attached on top of the selected flat

5、ness base. The angular interferometer is placed in the path between the laser head and the angular reflector.</p><p>  Figure 1 - Principle of measurement</p><p>  The laser beam is split into t

6、wo by the beam-splitter inside the angular interferometer. One part of the beam (the measurement beam A1) passes straight through the interferometer and is reflected by one of the twin reflectors of the angular reflector

7、 back through the interferometer and into the laser head. The other beam (measurement beam A2) passes through the periscope part of the angular interferometer to the second reflector from where it returns through the int

8、erferometer and into the laser</p><p>  An angular measurement is produced by comparing the path difference between the beams A1 and A2, (i.e. the measurement is independent of the distance between the laser

9、 and the interferometer). The 'flatness reading' displayed by the software is the incremental height between the 'front' and 'back' feet of the flatness baseplate on which the angular reflector is

10、 fitted. This incremental height is calculated from the angular measurement and knowledge of the distance between the centres of the fron</p><p>  For each measurement line (see Standard methods for assessin

11、g flatness), the angular interferometer (mounted on the flatness turning mirror) stays stationary, while the reflector (mounted on a flatness base) moves along the line in incremental steps defined by the foot-spacing.&l

12、t;/p><p>  A flatness measurement is carried out by taking a series of incremental height readings as the angular reflector is moved along the measurement path. </p><p>  Figure 2 - Incremental mea

13、surements drawing changes </p><p>  In Figure 2 above: </p><p>  Position I is the initial position at which the interferometer reading is normally datumed. </p><p>  Position II is

14、 one foot-spacing beyond Position I. The interferometer reading will be the incremental distance d1, which is the difference in 'height' (with respect to the datum line) of the front and back feet of the flatness

15、 baseplate. </p><p>  Position III is one foot-spacing beyond Position II. The interferometer reading will be d2, i.e. the difference in height between the front and back feet of the baseplate in its new pos

16、ition. </p><p>  Similarly, the reading at Position IV will be d3, and so on for all subsequent positions on the measurement line. </p><p>  The actual flatness of the measurement line will be t

17、he algebraic sum of the reading d1, d2 etc (plus the reading at the ‘datum’ position (I) if it had not been zeroed). </p><p>  Note: Environmental compensation is not required when taking flatness measuremen

18、ts, as the difference in path lengths between the two beams is so small that the error due to environmental effects is negligible.</p><p>  Standard methods for assessing flatness</p><p>  To me

19、asure the flatness of a surface, a number of measurement lines need to be taken over the surface. There are two standard methods of carrying out flatness measurements:</p><p>  Moody method</p><p&

20、gt;  Grid method</p><p>  The flatness of a surface can be defined as the separation of two planes which are parallel to the general trajectory of the surface and which just enclose the measured surface as s

21、hown in Figure 1.</p><p>  Figure 1 - Flatness specification</p><p>  Flatness deviations for a surface plate of a known size can be compared with permitted deviations in national standards.<

22、/p><p>  Moody method</p><p>  With the Moody method, measurement is restricted to the eight prescribed lines as shown in Figure 2.</p><p>  Figure 2 - Moody map of surface plate </

23、p><p>  The Moody method was first proposed by J.C. Moody in 1955 and has subsequently achieved wide acceptance. The method provides a relatively quick method of calibrating a surface plate, with the results be

24、ing presented as a contour plot along the eight measurement lines tested, in a format acceptable for certification.</p><p>  This method does have one disadvantage - all of the points on all of the eight lin

25、es must be measured and plotted. This can cause problems in defining a foot-spacing which will meet this requirement, particularly on slotted tables/surfaces where the position of one or more slots may coincide with the

26、required position of one of the feet of the flatness base.</p><p>  Grid and half grid method</p><p>  With the Grid method, any number of lines may be taken in two orthogonal directions across

27、the surface as shown in Figure 3. </p><p>  Figure 3 - Grid map of surface plate</p><p>  With the Grid method, whilst the incremental nature of the measurement technique requires that all point

28、s on a given line are measured, it is not necessary to take measurements on all lines. This allows the measurement lines to be configured to avoid 'obstructions' (e.g. slots) or to provide greater detail in a giv

29、en area.</p><p>  The Half-grid method as shown in Figure 4 is a special case of the grid method where a number of measurement lines are taken in one direction (e.g. the X-axis), but only the perimeter lines

30、 are used for the orthogonal direction.</p><p>  Figure 4 - Half-grid map of surface plate</p><p>  A disadvantage with both grid methods is that they require a reference plane to be defined. An

31、 alternative technique such as the Moody method is needed to define this reference plane.</p><p>  To perform flatness measurements using the Moody method, carry out the following steps:</p><p>

32、  Prepare the surface plate for flatness measurement.</p><p>  Set up the flatness data capture software.</p><p>  Set up the laser and optics.</p><p>  Align the laser beam al

33、ong a measurement line.</p><p>  Capture data for the measurement line.</p><p>  Set up and measure the other seven measurement lines.</p><p>  Analyse the captured flatness data. I

34、nspect the data for measurement errors as discussed in Factors affecting accuracy of flatness measurement</p><p>  Preparation of the surface plate</p><p>  Before calibration, the surface plate

35、 should be cleaned thoroughly and left to reach thermal equilibrium with the surroundings. A 'map' of the measurement lines should be marked on the surface plate itself with lead pencil or chalk.</p><p

36、>  All markings made on the surface plate should be offset from the measurement line by either 8.5 mm (0.33 in) or 41.5 mm (16.33 in), these being the distances from the longitudinal edges of the b

37、aseplates to the centre line through the front and back feet as shown in Figure 1. Care should be taken not to mark the table where a flatness foot placing will occur, as this may cause measurement errors. </p>

38、;<p>  Figure 1 - Location of perimeter lines</p><p>  To allow the placement of the turning mirror, the perimeter measurement lines should be at least 108 mm (4.25 in) from the edge of the

39、surface plate on the side that will be parallel to the laser beam, and at least 75 mm (3 in) from the other three edges as shown in Figure 1.</p><p>  The length of each measurement line should be

40、an integral multiple of the foot-spacing selected. This places a constraint on the surface area which can be measured and it may not be possible to 'map' the whole of the surface area. When using the Moody method

41、, the constraint is more severe as this requirement applies to the two diagonals as well as the orthogonal axes. In practice, acceptable closure errors can normally be achieved if the length of the diagonal meets this re

42、quirement to within 1%</p><p>  Flatness data capture software</p><p>  Set-up of laser and optics</p><p>  1. Mount the ML10 laser on the tripod remote from the surface plate. Ensu

43、re the laser is level. Once positioned, the laser should not be moved.</p><p>  2. Align the laser head parallel to the surface plate and to a perimeter line, with the beam at least 83 mm (3.25 in)

44、 from the perimeter line and 25 mm (1 in) from the edge of the surface plate as shown in Figure 2.</p><p>  3. So that all measurement lines can be taken without moving the ML10 laser, mount the an

45、gular interferometer, as shown in Figure 3, on the base of a flatness turning mirror. Mount the angular interferometer so that the side with the single optical aperture is facing the mirror and the side with two optical

46、apertures is facing the angular reflector. This is used for all measurement lines. A second flatness turning mirror is used for those measurement lines which require a further deviation of th</p><p><b>

47、;  Figure 3 </b></p><p>  Measurement line set-up and capture</p><p>  Perform a measurement along each of the measurement lines as shown below:    Diagonal EA  

48、  Perimeter line CA    Centre line DH    Perimeter line EG    Perimeter line AG    Centre line BF    Perimeter line CE  

49、0; Diagonal GC </p><p>  For each measurement line, align the optics over the entire length of travel </p><p>  Capture data for that measurement line.</p><p>  Minimise m

50、easurement errors as discussed in factors affecting accuracy of flatness measurements.</p><p>  Moody measurement line configurations</p><p>  Figure 4 - Typical Moody measurement routine - diag

51、onal EA</p><p>  Figure 5 - Typical Moody measurement routine - perimeter line CA</p><p>  Figure 6 - Typical Moody measurement routine - centre line DH</p><p>  Figure 7 - Typical

52、Moody measurement routine - perimeter line EG</p><p>  Figure 8 - Typical Moody measurement routine - perimeter line AG</p><p>  Figure 9 - Typical Moody measurement routine - centre line BF<

53、/p><p>  Figure 10 - Typical Moody measurement routine - perimeter line CE</p><p>  Figure 11 - Typical Moody measurement routine - diagonal GC</p><p>  Flatness analysis</p>&l

54、t;p>  The Laser10 analysis software includes facilities for plotting the data to either Moody or Grid format.</p><p>  Analysis software</p><p>  The analysis software can be accessed by sele

55、cting Data/Analyse from the menu bar or by clicking on the button on the toolbar of the flatness data capture software.</p><p>  Now select the Analysis option from the menu bar and the following options are

56、 available: </p><p>  Moody or Grid plot </p><p>  Print numeric Moody or Grid data </p><p>  Whether the Moody or Grid options are available depends on the data in the file loaded.

57、 In the following example, Moody has been selected.</p><p>  Figure 1 - Moody flatness contour plot</p><p>  The control panel overlaid on top of the plot allows you to select the line and point

58、 that you want to analyse. Use the arrow keys to select the position that you want to analyse. The flatness error in micrometres is shown for the selected line and point. When you click on the Done key, the control panel

59、 is hidden.</p><p>  Both Moody and Grid presentations include a characteristic statement of 'flatness range' in the box below the three-dimensional projection of the surface. The 'range' def

60、ines flatness of the measured surface as the separation of the planes which just enclose the measured surface as discussed in standard methods of assessing flatness.</p><p>  The closure errors are also defi

61、ned.</p><p>  If you had selected Grid, the display would be as follows:</p><p>  Figure 2 - Grid flatness contour plot</p><p>  Plot options</p><p>  The Plot/Elevatio

62、n and Rotation option on the menu bar allows you to alter the projection of the plot. When you select this you will see the following:</p><p>  You can now change the elevation and rotation by dragging the p

63、ointers. The effect can be seen by comparing Figure 3 (where the elevation and rotation are 45º and 75º respectively) with Figure 1 (where they are both 35º).</p><p>  Figure 3 - Moody plot -

64、alternative projection</p><p>  The Plot/Units option on the menu bar allows you to alter the units being used. When you select this, you will see the following:</p><p>  Use the mouse to select

65、 the units you want to use then click OK.</p><p>  Closure errors</p><p>  Typical flatness contour plots are shown in Figures 1 and 2. The 'closure errors' reported are an indication of

66、 the validity of the data.</p><p>  Figure 1 - Moody flatness contour plot</p><p>  On the Moody plot, there are two closure errors, corresponding to the differences in readings between the inte

67、rsection of the diagonals and lines FB and HD. These are known as closure errors 7 and 8 respectively.</p><p>  Figure 2 - Grid flatness contour plot</p><p>  On the Grid plot, four reference po

68、ints are defined, and the X and Y lines through these points are reference lines. There will be n closure errors, corresponding to the number of intersections between two non-reference lines. Only the maximum value is di

69、splayed.</p><p>  With a Half-Grid plot there are no closure errors, since there are only two Y lines, both of which are reference lines.</p><p>  The maximum value of the closure errors gives a

70、n indication of the validity of the calibration. If the worst closure error is less than 2.5 µm, the calibration can be considered to have been completed satisfactorily. If any closure error is greater than this val

71、ue, the measurements and analysis may have to be repeated.</p><p>  Factors affecting accuracy of flatness measurements</p><p>  The following factors can affect the accuracy of measurement:<

72、/p><p>  Beam alignment error</p><p>  As discussed in Beam alignment procedure, the error in alignment between the laser beam and the measurement line will affect the accuracy of measurement. The

73、maximum alignment errors allowed to achieve the measurement accuracies given in the Specifications section are shown below:</p><p>  These alignments should be achievable 'by eye'. </p>&

74、lt;p>  Note: An alignment error of 1.5 arc min is equivalent to a 0.5 mm error over 1 m.</p><p>  Differential expansion of flatness base feet</p><p>  Differential expansion of the

75、 front and back feet of the flatness base will cause an error. As with the angular reflector housing, the flatness base should be handled as little as possible during a measurement and should be kept away from heated or

76、cooled surfaces or air masses so that its temperature remains stable.</p><p>  Repeatability of measurements</p><p>  Any accumulation of dirt particles or granite 'dust' under the feet

77、of the flatness  base can introduce a measurement error. Measurement errors are often signified by a large closure error. To reduce measurement errors to a minimum, the reflector should be moved to the centre of the

78、 line and the laser system zeroed. The reflector should then be moved from end to end along the measurement line several times, while the readings from the laser read-out are observed. These readings should be repeata<

79、;/p><p><b>  平面度測量</b></p><p><b>  平面度測量步驟</b></p><p>  平面度測量是用于檢查CMM工作臺和劃線臺的平面度。它測定平面是否存在明顯的突起或者凹槽并進行量化。如果這些存在明顯的誤差,則可能必須進行如刮研等的補救工作。</p><p>  了解平

80、面度測量的基本原理和方法請參考:</p><p>  1,平面度測量的原理</p><p>  2,評定平面度的標(biāo)準(zhǔn)方法</p><p><b>  平面度測量的原理</b></p><p>  使用平面度測量鏡組進行測量。其中角度干涉鏡(Angular interferometer)是和轉(zhuǎn)向鏡(Turning mirr

81、or)連接在一起,角度反射鏡(Angular reflector)連接在選定的平面度底座(Flatness base)上部。角度干涉鏡放置在激光頭和角度反射鏡路徑之間。</p><p><b>  圖一:測量原理圖</b></p><p>  激光束經(jīng)角度干涉儀內(nèi)部的分光鏡分為兩道。其中一道光束(測量光束A1)直接通過干涉儀并經(jīng)角度反射器中的一個反射鏡反射回干涉儀并回

82、到激光頭。另一道光束(測量光束A2)通過角度干涉儀的展望鏡射向第二個反射鏡并經(jīng)干涉鏡返回激光光。</p><p>  角度測量通過比較光束A1和A2的光路差別(測量結(jié)果與激光頭和干涉鏡的距離無關(guān))。軟件顯示的“平面度”讀數(shù)是由安裝在平面度底座上的角度反射鏡前、后點的增量高度。這個增量高度由角度測量和平面度底座前后點中心點距離計算。這個距離,稱為點距,必須在測量開始前輸入到校準(zhǔn)軟件中。</p><

83、;p>  對于每一道測量線(見平面度測量的標(biāo)準(zhǔn)方法),角度干涉鏡(安裝在平面度轉(zhuǎn)向鏡)保持靜止,而反射鏡(安裝在平面度底座)沿著檢測路徑以根據(jù)點距定義的增量脈沖移動。</p><p>  平面度測量是通過采集一系列當(dāng)角度反射鏡沿著檢測路徑移動的增量高度讀數(shù)實現(xiàn)的。</p><p>  圖2:圖示測量增量變化</p><p><b>  如上圖2示&l

84、t;/b></p><p>  位置I為開始位置,在該點處干涉儀讀數(shù)為正常值</p><p>  位置II與位置I有一個點距距離的位置。干涉儀讀數(shù)將增加一個d1距離,該距離表示平面度底座“前”、“后”點之間的高度差(沿著數(shù)據(jù)線方向)</p><p>  位置III與位置II有一個點距距離的位置。干涉儀的讀數(shù)將變?yōu)閐2.舉例說明為平面度底座在它新的位置上“前”、

85、“后”點之間的高度差。</p><p>  同理,在位置Ⅳ讀數(shù)將為d3,其他沿測量路徑的所有順序位置也是如此。</p><p>  測量路徑的實際平面度將是讀數(shù)d1、d2(加上數(shù)據(jù)位置點I的讀數(shù),如果沒有則為零)的代數(shù)總和。</p><p>  注意:當(dāng)進行平面度測量時,沒有需要進行環(huán)境補償,因為兩道光束間在路徑方向上的偏差很小,因而由環(huán)境引起的誤差可以被忽略。&l

86、t;/p><p>  平面度測量的標(biāo)準(zhǔn)方法</p><p>  為測量一個表面的平面度,必須在表面上定義一系列的測量路徑(measurement line)。平面度測量有兩種標(biāo)準(zhǔn)方法:</p><p><b>  穆迪法</b></p><p><b>  柵格法</b></p><

87、p>  表面的平面度可以定義為兩個包圍著被檢測表面的相互平行平面到表面公共軌線(general trajectory)的偏差值。如圖1所示。</p><p><b>  圖1:平面度的定義</b></p><p>  一個已知表面的平面底偏差可以和國際標(biāo)準(zhǔn)中的允差進行比較</p><p><b>  穆迪法</b>&

88、lt;/p><p>  使用穆迪法,測量被限制在如圖2所示的八條指定檢測路徑</p><p><b>  圖2:平面的穆迪圖</b></p><p>  穆迪法首次由J.C.Moody在1955年提出并隨后獲得廣大的認(rèn)同。該方法提供了一個相對快捷的方式檢測一個平面,檢測結(jié)果表示為沿著八條檢測路徑的輪廓線。是一種可被接受的檢測方式。</p>

89、;<p>  這種方法有一個缺點――在所有的八條檢測線上的所有點都必須進行測量并標(biāo)定(plotted)。這樣就給定義一個滿足該要求的點距帶來困難,尤其是在狹小的臺面或是表面,槽(slots)的位置可能和平面底座所要求的某個點距重疊。</p><p><b>  柵格和半柵格法</b></p><p>  使用柵格法,任意數(shù)量的路徑將被分為如圖3所示覆蓋整

90、個表面的兩個正交方向。</p><p><b>  圖3:表面的柵格圖</b></p><p>  使用柵格法,該測量方法的增量原則要求特定路徑上的所有點都必須進行測量,因而允許對測量路徑進行修改以避免障礙(例如:槽)或在特定區(qū)域提供更多的細(xì)節(jié)。</p><p>  如圖4所示的半柵格法是當(dāng)在一個方向上(如X軸)進行一系列的測量時,柵格法中的一

91、種特例,但在直角方向上只有輪廓線可使用該方法。</p><p>  圖4:表面的半柵格圖</p><p>  兩種柵格法的共有缺點是它們要求定義一個參考平面。而在其他方法如穆迪未予是不需要對參考平面進行定義的</p><p>  使用穆迪進行平面度測量,執(zhí)行如下步驟:</p><p>  平面度測量前的工作臺準(zhǔn)備工作</p>&

92、lt;p>  設(shè)置平面度數(shù)據(jù)采集軟件</p><p><b>  安裝激光頭及光鏡</b></p><p><b>  平面度光束準(zhǔn)直步驟</b></p><p><b>  數(shù)據(jù)采集</b></p><p>  對其他七個測量路徑的安裝及測量</p>&l

93、t;p>  分析采集的平面度數(shù)據(jù)。根據(jù)影響平面度測量精確度的因素一節(jié)檢查數(shù)據(jù)中的測量誤差</p><p>  平面度測量準(zhǔn)備及設(shè)置</p><p>  該節(jié)討論的是使用穆迪法進行平面度測量的準(zhǔn)備工作。相似的方法也可用于柵格法。</p><p><b>  平面工作臺準(zhǔn)備</b></p><p>  1.測量開始前,

94、就全面清潔工作臺并停放,與便達(dá)到和環(huán)境相平衡的溫度。使用鉛筆或粉筆在工作臺表面上標(biāo)示出測量路徑“圖”。</p><p>  2.在平面工作臺上的標(biāo)示應(yīng)和測量路徑有8.5mm(0.33in)或41.5 mm(16.33in)的偏離,作為如圖1所示的底座縱向邊界通過前、后點到中線的距離。注意不要在工作臺上標(biāo)示平面度點所經(jīng)過的點,這樣將可能產(chǎn)生測量誤差。</p><p>  圖1.預(yù)置邊界線(p

95、erimeter line)的位置</p><p>  3.如圖1所示,為方便轉(zhuǎn)向鏡的安裝,預(yù)置邊界線在和激光束平等的一邊應(yīng)最少距離平面工作臺的邊界108mm(4.25in),最少距離其他三條邊界75mm(3in).</p><p>  4.每個測量路徑的長度就是所選點距的整數(shù)倍。這就對可測量的工作臺面積進行的限定,有可能不能夠?qū)Ρ砻娴娜棵娣e進行標(biāo)示。當(dāng)使用穆迪法時,該限定將因為要同時應(yīng)

96、用于兩個對角軸線及直角軸線上而要求更加嚴(yán)格。在實際使用中,如果對角軸線的限定值小于點距的1%,則通常可以取得較滿意的閉合誤差。雷尼紹數(shù)據(jù)采集軟件可以對任意給定點距和工作臺尺寸選擇適合的目標(biāo)點個數(shù)(即有郊的工作臺面積)提供的支持。</p><p><b>  激光頭及光鏡的安裝</b></p><p>  1.在遠(yuǎn)離平面工作臺的位置將激光頭安裝在三角架上。確定激光頭是水

97、平的,定位后不要移動激光頭。</p><p>  2.對齊激光頭和平面工作臺及預(yù)置邊界線平行,激光束就最少距離預(yù)置邊界線831 mm(3.25in)及距離平面工作臺 25 mm(1 in)。如圖2所示。</p><p><b>  圖2</b></p><p>  3.如此一來,所有的測量路徑都可以在不移動ML10 激光器下進行測量,按如圖3所

98、示在平面度轉(zhuǎn)向鏡底座上安裝角度干涉鏡。按使帶有單個光鏡孔的面朝向位子,兩個光鏡孔的面朝向角度反射鏡安裝角度干涉鏡。這將在所有測量路徑上使用。第二個平面度轉(zhuǎn)向鏡是用在要求更大光束折射的測量路徑上,見圖4,5,6, 7及11.</p><p><b>  圖3</b></p><p>  測量路徑的選擇及采集</p><p>  按如下順序沿著每個

99、測量路徑進行測量。</p><p><b>  對角軸線EA</b></p><p><b>  預(yù)置邊界線CA</b></p><p><b>  中心線DH</b></p><p><b>  預(yù)置邊界線EG</b></p><p&

100、gt;<b>  預(yù)置邊界線AG</b></p><p><b>  中心線BF</b></p><p><b>  預(yù)置邊界線CG</b></p><p><b>  對角軸線GC</b></p><p>  在每一個測量路徑上對測量全長進行光鏡對齊&l

101、t;/p><p>  采集每個測量路徑上的數(shù)據(jù)</p><p>  如何減小測量誤差將在影響平面度測量精度的因素一節(jié)中討論。</p><p>  穆迪法測量路徑的設(shè)置</p><p>  圖4.典型穆迪法測量慣例――對角軸線EA</p><p>  圖5.典型穆迪法測量慣例――預(yù)置邊界線CA</p><

102、p>  圖6.典型穆迪法測量慣例――中心線DH</p><p>  圖7.典型穆迪法測量慣例――預(yù)置邊界線EG</p><p>  圖8.典型穆迪法測量慣例――預(yù)置邊界線AG</p><p>  圖9.典型穆迪法測量慣例――中心線BF</p><p>  圖10.典型穆迪法測量慣例――預(yù)置邊界線CE</p><p&g

103、t;  圖11.典型穆迪法測量慣例――對角軸線GC</p><p><b>  采集測量路徑的數(shù)據(jù)</b></p><p>  安裝并測量其他七條測量路徑</p><p>  分析采集的數(shù)據(jù),檢查在“影響平面度測量精度的因素”中討論的測量誤差數(shù)據(jù)。</p><p><b>  平面度分析</b>&l

104、t;/p><p>  Laser 10分析軟件包含根據(jù)采集數(shù)據(jù)繪制穆迪圖或者柵格圖的工具。</p><p><b>  分析軟件</b></p><p>  我們可以通過點擊平面度數(shù)據(jù)采集軟件菜單欄上的數(shù)據(jù)/分析菜單或是點擊工具欄上的按鈕使用分析軟件。</p><p>  在菜單欄中選擇分析選項,可使用如下選項:</p

105、><p><b>  穆迪圖或者柵格圖</b></p><p>  打印穆迪法或者柵格法的數(shù)據(jù)</p><p>  穆迪法或是柵格法選項是否可用取決于裝載的文件數(shù)據(jù)。在下面的例子中,使用的是穆迪法</p><p>  圖1:穆迪平面度輪廓圖</p><p>  在輪廓圖上的控制面板使你可以選擇線或是點

106、進行分析。使用方向鍵選擇你想要進行分析的位置。將顯示選定線或點的以微米為單位的平面度誤差。點擊完成鍵,可以隱藏控制面板。</p><p>  在三維的表面輪廓圖下方的表格中,都有對穆迪法或是柵格法關(guān)于“平面度范圍”的特性表征。該“范圍”定義的所測量表面平面度就是在“測量平面度的標(biāo)準(zhǔn)方法”中討論的包圍被測量表面的平面間距。</p><p>  這其中也定義了閉合誤差。</p>

107、<p>  若選用柵格圖,顯示的圖將變?yōu)槿缦拢?lt;/p><p>  圖2:柵格平面度輪廓圖</p><p><b>  圖形選項</b></p><p>  在菜單欄中的圖形/下面圖和旋轉(zhuǎn)選項使你可以改變圖形有景象。當(dāng)選擇該選項時你將看到下圖:</p><p>  通過拖拉交點,你可以調(diào)整圖形高度和旋轉(zhuǎn)角。該效

108、果可通過圖3(對應(yīng)的高度和旋轉(zhuǎn)角為和)和圖1(兩者都是)進行比較。</p><p>  圖3:改變景象的穆迪圖</p><p>  菜單欄上的圖形/單位選項可以改變使用的單位。當(dāng)使用該選項時,如下圖所示:</p><p>  使用鼠標(biāo)選擇使用的單位并點擊OK</p><p><b>  閉合誤差</b></p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論