外文翻譯--使用磁性粉末去除精密部件上毛刺的加工方法_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  附錄</b></p><p><b>  附錄1</b></p><p><b>  英文原文</b></p><p>  Journal of Materials Processing Technology 187–188 (2007) 19–25</p>

2、<p>  Micro deburring for precision parts using magnetic </p><p>  abrasive finishing method S.L. Ko a,., Yu M. Baron b, J.I. Park a </p><p>  a Center for Advanced E-System Integration, K

3、onkuk University, 1 Hwayang-dong, </p><p>  Kwangjin-gu, Seoul 143-701, Republic of Korea </p><p>  b Saint-Petersburg State Polytechnic University, St.-Petersburg, Russia </p><p>&

4、lt;b>  Abstract </b></p><p>  Using the developed electromagnetic inductor for deburring micro burr, more detail characteristics of the performance are analyzed. Experiments were carried out to veri

5、fy the influence of each conditions: volume of powder, height of gap, rotational frequency of the inductor and feed velocity. Proper deburring conditions are suggested to satisfy the productivity and the accuracy. In add

6、ition to deburring efficiency, the influence to surface roughness is analyzed. To improve the surface roughness </p><p>  . 2006 Elsevier B.V. All rights reserved. </p><p>  Keywords: Magnetic a

7、brasive finishing (MAF); Micro burrs; Electromagnetic inductor; Deburring </p><p>  1. Introduction </p><p>  The quality of precision parts can be evaluated by the surface and edge quality. The

8、 geometry of edge is determined by deburring process for removing burr and rounding process, which is </p><p>  necessary for its function. The surface quality is determined by surface roughness and the stre

9、ss state of the surface. As one of the finishing methods, magnetic abrasive finishing method </p><p>  (MAF) has been used for a long time [1–3]. MAF is based on the magnetization property of ferromagnetic i

10、ron and the machining property of abrasives, which is made of Al2O3 and SiC. Along the magnetic flow, which is formed by the magnetic inductor, the magnetic powders will be arranged like brushes and the strength and stif

11、fness of the magnetic brushes can be controlled by the electric current supplied. As a first application of MAF technology for deburring, the burr formed on plane after drillin</p><p>  E-mail addresses: slk

12、o@konkuk.ac.kr (S.L. Ko), </p><p>  baron@burr.hop.stu.neva.ru (Y.M. Baron), jungil78@hanmail.net (J.I. Park). </p><p>  and 0.30–0.40 m surface roughness on surface after piercing operation. In

13、 the previous work, electromagnetic inductor for deburring this part was designed and manufactured. Some conditions were applied to evaluate the performance of the inductor [5]. The proper powders are selected based on t

14、he previous work using the evaluation method to characterize performance </p><p>  of powder [6]. The characteristic equation can be obtained from simply developed experiment method, which enables to predict

15、 the productivity and powder tool life [6]. In this paper, proper </p><p>  finishing conditions are to be recommended for precision deburring. Volume of powder, rotational frequency of inductor, height of g

16、ap and the feed velocity of table are the main factors to be determined from the more detail experiment based on the result from the experiment in previous work. As a result, the optimized conditions are suggested to imp

17、rove productivity. The vibration table is applied to improve the performance, which was verified in previous work also as in Fig. 1. The efficiency f</p><p>  In the case of micro deburring for precision par

18、ts, improvement of surface roughness during deburring becomes one of the most important task. Most influencing factors for surface roughness are component of powder and the coolant supply method. Fe-powder without abrasi

19、ve is proved to be efficient by protecting adhesion on the surface which results in 0924-0136/$ – see front matter . 2006 Elsevier B.V. All rights reserved. </p><p>  doi:10.1016/j.jmatprotec.2006.11.183 <

20、;/p><p>  S.L. Ko et al. / Journal of Materials Processing Technology 187–188 (2007) 19–25 Fig. 1. Overall view of inductor EMI-2 (a) and the scheme of its application (b). improved surface roughness. And conti

21、nuous supply of coolant improves the surface roughness. The influence of flow rate is also investigated. </p><p>  2. Experiment equipment </p><p>  The electromagnetic inductor EMI-2 was design

22、ed and manufactured specially for burrs removal on surfaces of small parts made from ferromagnetic or non-magnetic materials. The view of the inductor and the scheme of the experiments are shown in Fig. 1. Three kinds of

23、 movements are involved in this case: inductor rotation; feed of the sample (workpiece); oscillation of the top plate with a sample in the direction normal to the feed direction. The sample moves inside the working gap f

24、illed by magnet</p><p>  S.L. Ko et al. / Journal of Materials Processing Technology 187–188 (2007) 19–25 netization curves for EMI-2 with different working gaps are shown in Fig. 2. The vibrating table was

25、used to activate abrasive cutting and to improve the quality of worked surfaces. It is claimed that the extra oscillation movement at MAF guarantees self-sharpening of the powder and higher productivity and better qualit

26、y of a worked surface as a result [2]. The used vibrating table creates longitudinal or transverse</p><p>  3. Characterization of inductor EMI-2 </p><p>  The main differences of the electromag

27、netic inductor EMI-2 to EMI-1, which was developed for the burr on plane [4] are following: a sample is continuously at contact with magnetic abrasive powder during process; both sides of the sample are Fig. 4. Influence

28、 of MAF parameters to process productivity using the inductor EMI-2: volume of the powder (a), height of the work gap (b), inductor rotation frequency (c) and feed (d). Fig. 5. Influence of coolant to MAF productivity an

29、d the work surface rou</p><p>  unit area, which is used for comparison of deburring conditions [6]. MAF conditions are: working gap height 4 mm; magnetic intensity in the gap 0.48 T; coil current I = 1–1.5

30、A; inductor rotation frequency n = 95–280 min.1; feed f = 127 mm/min; oscillation frequency of vibration table nosc = 500 min.1; amplitude of oscillation Aosc = 2.5 mm; MAF duration corresponds to number of the table str

31、okes in feed N = 1, 2, 4, 8 (it corresponds to 0.5, 0.9, 1.9, 3.8 min); magnetic abrasive powder Fe(CH2);</p><p>  3.1.1. Amount of the powder for process </p><p>  The powder is packed inside t

32、he working gap by magnetic forces, and the amount of powder is important for productivity and cost of MAF operation. The volume of the working gap (the gap height δ = 4 mm) at inductor EMI-2 equals to Vg =19cm3. This vol

33、ume was calculated as 100% of the powder for one-time process Vp. Other conditions are: n = 95 rpm; f = 127 mm/min; I =1.0A (B = 0.45 T); N = 2; coolant (cutting Fig. 7. Rounding of edges by MAF (100×). S.L. Ko et a

34、l. / Journal of Materials Processing</p><p>  3.1.2. Height of the work gap δ </p><p>  The design of inductor EMI-2 allows to change the height of the work gap from 2 up to 10 mm according to t

35、he height of a workpiece. Influence of the wok gap was examined over </p><p>  the range δ = 4–10 mm at Vp = 130% Vg. Other conditions were the same as at previous experiment. Increase of the work gap induce

36、s the decrease of productivity by the decrease of magnetic intensity inside the gap. The coil current was constant during this experiment. It can be observed from Fig. 4b that magnetic intensity becomes smaller as work g

37、ap δ increases. </p><p>  3.1.3. Inductor rotational frequency and feed </p><p>  When the volume of powder equals to 100% Vδ and the height of the gap δ = 4 mm at this experiment, the influence

38、 of the rotation frequency of inductor is shown in Fig. 4c. The duration of the contacts of powder grains with the work surface increases proportionally to the rotation frequency n, which increases the productivity eithe

39、r. But rate of the increase of productivity becomes slow at the frequency larger than 180 rpm as shown in Fig. 4c. This might be caused by the increase of centrifugal f</p><p>  The use of chemical active an

40、d surface-active coolants is very important for MAF process [2]. Induced currents are generated inside a workpiece material and especially inside of its blanket during MAF. The electric charged surface of the workpiece a

41、ctivates chemical processes and an action of surface-active matters. This fact was verified at the research of deburring by MAF [6]. The research on the role of coolant was continued at these experiments. The experiment

42、was carried out with n = 95 rpm</p><p>  4. Analysis of edges and surface quality </p><p>  after MAF The samples shown in Fig. 3 were used. The edges after piercing had several kinds of defects

43、: burrs, scratches and rough surface roughness (Fig. 6). Magnetic abrasive finishing deletes all these defects. And it takes longer to remove all the defects than to remove burrs. For example burrs were completely remove

44、d after one stroke of feed and the rounding of edges was Fig. 8. Edge quality before (a) and after MAF (b) (1000×). S.L. Ko et al. / Journal of Materials Processing Technology 18</p><p>  CH2 mixture po

45、wder mixture powder powder CH2 C 2.47 0 1.46 23.11 5.84 Si 0.40 0.30 0.71 1.99 Mn 0.51 0.44 0.64 1.09 0.36 0.35 Fe 55.94 58.70 58.07 96.42 39.90 50.34 Ni 38.88 40.34 40.73 25.96 34.17 Cu 0.18 0.23 0.07 Er 1.61 0 1.09 Al

46、0.56 0.37 Others Co (0.32) O (6.78); Ca (0.72); O (4.79); Ca (3.35); Cl (0.61); K (0.20) Cl (0.20) Total 100 100 100 100 100 100 process, and this promotes adhesion of the component of powder to the work surface. We show

47、ed above that a surface-active coolant hinders</p><p>  at conditions: n = 180 rpm; f = 127 mm/min; nosc = 500 min.1; Aosc = 2.5 mm; B = 048 T; MAF duration for two strokes. The coolant (cutting oil) was per

48、iodically injected into the gap. Two sorts of powders were used: mechanical mixture of powders of iron CH2 (50% vol.) and Al2O3 (50% vol.); iron powder CH2 [4]. The top surface of sample has tracks of abrasive cutting wh

49、en deburring was performed by the mixture powder (Fig. 9a). There were no tracks on the surface when iron powder was used (Fig. 9</p><p>  5. Conclusions </p><p>  (1) Electromagnetic inductor f

50、or deburring and surface finishing of the part of electric gun is developed before. More detail characteristics of deburring are investigated by changing the main parameters. </p><p>  (2) As deburring condi

51、tions, volume of powder, height of gap, inductor rotational frequency, feed velocity and the method of coolant supply are analyzed by experiment more detail. </p><p>  (3) In addition to the performance of d

52、eburring, the influence to surface roughness is also analyzed. To improve the surface roughness, several systems of coolant supply are applied. The continuous coolant flow improves the surface quality. </p><p&

53、gt;  (4) The remained particle on surface after MAF consists of the component of the coolant and abrasive. Ultrasonic cleaning can remove the particles completely. And the iron powder is recommended to prevent adhesion a

54、nd the particles on surface. </p><p>  Acknowledgement This work was supported by the Ministry of Science and Technology of Korea through the 2001 National Research Laboratory (NRL) program. References </

55、p><p>  [1] Y.M. Baron, Technology of Abrasive Finishing in Magnetic Field, Mashinostroenie, </p><p>  Leningrad, 1975. </p><p>  [2] Y.M. Baron, Magnetic Abrasive and Magnetic Finishi

56、ng of Products and </p><p>  Cutting Tools, Mashinostroenie, Leningrad Rus, 1986. </p><p>  [3] H. Yamaguchi, T. Shinmura, Study of an internal magnetic abrasive finishing </p><p> 

57、 using a pole rotation system. Discussion of the characteristic abrasive </p><p>  behavior, Precis. Eng. J. Int. Soc. (2000) 237–244. </p><p>  [4] S.L. Ko, Y.M. Baron, J.W. Chae, V.S. Polishuk

58、, Development of deburring </p><p>  technology for drilling burrs using magnetic abrasive finishing method, in: </p><p>  LEM21, November, Niigata, Japan, 2003. </p><p>  [5] J.L.

59、Park, S.L. Ko, Y.H. Hanh, Y.M. Baron, Effective deburring of micro </p><p>  burr using magnetic abrasive finishing method, key engineering materials, </p><p>  Trans Tech Eng. 291–292 (2005) 25

60、9–264 (ISSN 1013-9826). </p><p>  [6] Y.M. Baron, S.L. Ko, J.I. Park, Technique of comparison and optimization of </p><p>  conditions for magnetic abrasive finishing, key engineering materials,

61、 Trans </p><p>  Tech Eng. 291–292 (2005) 297–302 (ISSN 1013-9826).</p><p>  使用磁性粉末去除精密部件上毛刺的加工方法</p><p>  S.L. Ko a,?, Yu M. Baron b, J.I. Park a</p><p><b>  摘要&

62、lt;/b></p><p>  使用改進(jìn)后的電磁感應(yīng)器去除微小毛刺,分析加工中的更多細(xì)節(jié)特征。根據(jù)實(shí)驗(yàn)來檢驗(yàn)不同條件對(duì)去毛刺的影響:粉末的體積,間隙的寬度,感應(yīng)器的轉(zhuǎn)動(dòng)頻率和進(jìn)給速度。找出去毛刺最佳的工作條件來滿足生產(chǎn)率和精確度的要求。除了對(duì)去毛刺效率的研究之外,還要研究加工對(duì)表面粗糙度的影響。為了改善表面粗糙度和去除雜質(zhì),需要研究冷卻液供給方法和粉末的配料。連續(xù)流動(dòng)的冷卻液和未經(jīng)研磨的鐵粉對(duì)于去除毛刺和

63、改善表面質(zhì)量是非常有效的。</p><p>  關(guān)鍵詞:磁性研磨粉末加工法(MAF);微小毛刺;電磁感應(yīng)器;去毛刺</p><p><b>  1.導(dǎo)言</b></p><p>  從表面和邊緣的質(zhì)量能評(píng)估出精密部件的質(zhì)量。邊緣的幾何形狀由去毛刺加工和圓周加工決定,這對(duì)于零件的好壞有巨大作用。工件表面質(zhì)量取決于表面粗糙度和表面受應(yīng)力的情況。作為

64、精加工方法的一種,磁性粉末法(MAF)已經(jīng)用了很長時(shí)間了。MAF的原理是:磁鐵的具有的磁化的性質(zhì)以及能夠研磨加工的性質(zhì),它是由二氧化三鐵和碳化硅組成的。隨著磁性感應(yīng)器所形成的磁場(chǎng)的運(yùn)動(dòng),那些磁粉將被排列成像刷子一樣,這些磁性刷子的濃度和硬度可以被電流供應(yīng)所控制。</p><p>  最初應(yīng)用MAF技術(shù)去除毛刺是嘗試去除鉆孔后在平面上形成的毛刺。為了能夠進(jìn)行更有效的去除毛刺的分析研究,我們制造了一個(gè)去除鉆孔形成的毛

65、刺的感應(yīng)器。用一個(gè)精密的部件作為這項(xiàng)研究的樣本,它的毛刺的平均厚度有5-10微米。進(jìn)行加工后,表面的毛刺厚度變成了0.3-0.4微米。在實(shí)驗(yàn)前期的準(zhǔn)備工作中,我們?cè)O(shè)計(jì)并且制造了去除毛刺的電磁感應(yīng)器,在不用的條件下進(jìn)行感應(yīng)器的性能評(píng)估。之前一些合適的粉末通過某種評(píng)測(cè)方法從各種性質(zhì)的粉末中被挑選出來。從稍稍改進(jìn)的實(shí)驗(yàn)方法中能夠得出特征方程式,它能夠預(yù)先推算出生產(chǎn)力和粉末工具的壽命。在這個(gè)研究里,得出合適的工作條件將被推薦為精密部件去除毛刺。

66、粉末的體積,感應(yīng)器的轉(zhuǎn)動(dòng)頻率,間隙的寬度和工作臺(tái)的進(jìn)給速度是根據(jù)這些實(shí)驗(yàn)得出的需要進(jìn)行詳細(xì)研究的主要條件。實(shí)驗(yàn)結(jié)果是為提高生產(chǎn)效率和最優(yōu)化生產(chǎn)環(huán)境。使用震動(dòng)臺(tái)工作能改善去毛刺的性能,在實(shí)驗(yàn)之前已經(jīng)被驗(yàn)證了,如圖一所示。去除毛刺的效果以及表面粗糙度能夠通過使用震動(dòng)工作臺(tái)來改進(jìn)。</p><p>  在需要去除微小的毛刺的情況下,去除毛刺過程中如何改進(jìn)表面粗糙度成了首要任務(wù)之一。影響粗糙度大部分因素是粉末的組成和冷卻

67、液的提供方法。未經(jīng)研磨的鐵粉在防止表面粘附力被證實(shí)更有效果,這些粘附力能直接影響表面的粗糙程度。并且連續(xù)不斷的冷卻液供應(yīng)也能改善表面的粗糙度。而這個(gè)流速的影響也需要進(jìn)行研究。</p><p><b>  2.實(shí)驗(yàn)設(shè)備</b></p><p>  電磁感應(yīng)器EMI-2為了去除精密部件上的毛刺被特別設(shè)計(jì)并且制造出來的,它是由鐵磁體和無磁性材料做成的。感應(yīng)器的外觀和實(shí)驗(yàn)的方

68、案都在圖片一上顯示。這里涉及到三種運(yùn)動(dòng)方式:感應(yīng)器的轉(zhuǎn)動(dòng),樣品(工件)的進(jìn)給,樣品從正常方向到進(jìn)給方向的頂盤的震動(dòng)。樣品在填滿電磁粉末的加工間隙里運(yùn)動(dòng),這些粉末淹過了樣本,同時(shí)進(jìn)行修整和兩邊去除毛刺的加工。圖二中是加工間隙高度較小,電感強(qiáng)度B較大和切削力。這些數(shù)據(jù)從沒有填粉末的加工間隙推算出。當(dāng)間隙里面填滿磁性粉末時(shí),磁感強(qiáng)度增加了10%。在加工過程中,通過加工間隙和工件與磁性研磨粉末之間持續(xù)不斷的接觸,磁感應(yīng)器EMI-2的表面加工工序

69、和磁粉具有相同的特性。EMI-2對(duì)不同加工間隙的磁化曲線在圖二中顯示。</p><p>  震動(dòng)臺(tái)被用來輔助砂輪切割和改善工件表面質(zhì)量。它要求MAF額外的震動(dòng)運(yùn)動(dòng)來保證粉末的自我銳化,來取得更高的生產(chǎn)力和更好的工件表面質(zhì)量。這個(gè)震動(dòng)工作臺(tái)產(chǎn)生了頂盤在進(jìn)給運(yùn)動(dòng)的方向上的縱向的和橫向的震動(dòng)。這個(gè)頂盤是可以替換的,它由鐵磁體和無磁性的材料做成。</p><p>  3.感應(yīng)器EMI-2的描述&l

70、t;/p><p>  電磁感應(yīng)器EMI-2和EMI-1之間最大的區(qū)別就是:在加工過程中,樣本與磁性粉末持續(xù)不斷地相接觸。樣本的兩面同時(shí)進(jìn)行加工。但是感應(yīng)器僅僅檢測(cè)到能夠放到內(nèi)部間隙的較小的一部分。</p><p>  一部分的鐵鎳合金的電槍作為樣本通過感應(yīng)器EMI-2來確定MAF去除微小毛刺的工作環(huán)境(圖3a)。上面有三個(gè)直徑0.1mm的通孔。為了提高孔的邊緣的質(zhì)量和表面的質(zhì)量有必要進(jìn)行微小的

71、毛刺的去除。最初的毛刺的幾何形狀和邊緣橫截面如圖3b和c。</p><p>  實(shí)驗(yàn)按照?qǐng)D1b的計(jì)劃執(zhí)行完成。工件被固定在鋁制的頂盤上。特定的加工余量被定義為每個(gè)單位區(qū)域內(nèi)的體積。這些區(qū)域是被用來做去毛刺環(huán)境的比較。MAF加工環(huán)境:加工間隙寬度4mm;磁感強(qiáng)度0.48T;線圈電流I=1-1.5A;感應(yīng)器轉(zhuǎn)動(dòng)頻率n=95-280min-1;進(jìn)給速度f=127mm/min;振動(dòng)臺(tái)的震動(dòng)頻率nosc = 500 min

72、?1;震動(dòng)的幅度Aosc = 2.5 mm;MAF的周期與工作臺(tái)進(jìn)給的節(jié)奏相一致N= 1, 2, 4, 8(它相對(duì)應(yīng)的時(shí)間是0.3,0.9,1.9,3.8分鐘);磁性研磨粉末鐵粉;粉末的體積Vp = 11–27 cm3;需要研究的參數(shù):Vp, n, f, nosc。</p><p>  磁力使鐵粉充滿了加工間隙,對(duì)于生產(chǎn)力和MAF運(yùn)轉(zhuǎn)的消耗,知道粉末的總數(shù)是非常重要的。感應(yīng)器EMI-2上加工間隙(間隙厚度δ =

73、4 mm)的體積等于19cm3,這個(gè)體積能計(jì)算出100%的粉末在一次加工動(dòng)作中的體積。其他條件:n = 95 rpm;f = 127 mm/min; I = 1.0A (B = 0.45 T); N= 2;冷卻液(切削液)流動(dòng)率0.96l/mm。實(shí)驗(yàn)結(jié)果在圖4a中顯示。粉末的數(shù)量的增加能伴隨著更大的磁力,而能使生產(chǎn)力得到提高。但不是很明顯,因?yàn)檫@里有一些空余的間隙,多余的粉末有可能進(jìn)入主軸附近的這些間隙里。</p><

74、;p>  感應(yīng)器EMI-2的設(shè)計(jì)能允許根據(jù)工件大小的改變間隙厚度2-10mm。檢測(cè)影響工作間隙的范圍當(dāng)Vp = 130% Vg δ = 4–10mm。其他的條件和前一次實(shí)驗(yàn)相同。增加加工間隙使間隙里的電感強(qiáng)度減小,生產(chǎn)力降低。實(shí)驗(yàn)中線圈電流是一個(gè)常數(shù)。從圖4b能夠看出電感強(qiáng)度隨著加工間隙δ的增大而減小。</p><p>  在這個(gè)實(shí)驗(yàn)中,當(dāng)粉末的體積等于100% Vδ,加工間隙δ=4mm時(shí),影響感應(yīng)器轉(zhuǎn)動(dòng)

75、頻率的因素如圖4c。粉末與工件表面的接觸時(shí)間根據(jù)轉(zhuǎn)動(dòng)頻率n能適當(dāng)增加,生產(chǎn)力也能提高。但是當(dāng)頻率大于180rpm時(shí),生產(chǎn)力增長比例開始下降,如圖4c。這應(yīng)該是由于離心力和角速度的增加,大部分的粉末脫離了加工間隙。進(jìn)給速度的最優(yōu)化的實(shí)驗(yàn)在以下條件進(jìn)行:n = 95 rpm; f = 127–507 mm/min;nosc = 500 min?1;Aosc = 2.5 mm;δ = 4 mm; B = 0.48 T; MAF周期——冷卻液沖

76、擊工件的發(fā)出前后的兩個(gè)聲音(根據(jù)進(jìn)給情況,在4-15s之間)。結(jié)果在圖4d里面顯示。進(jìn)給速度的范圍在127-342mm/min時(shí)候的影響不是很大。但是要得到最佳的表面粗糙度時(shí),我們?nèi)=342mm/min。</p><p>  化學(xué)活化劑和表面冷卻液的作用對(duì)于MAF的加工很重要。工件材料內(nèi)部產(chǎn)生感應(yīng)電流,尤其是在MAF的外層表面內(nèi)部。工件表面的電荷會(huì)促進(jìn)產(chǎn)生一些化學(xué)變化。在MAF去毛刺的研究中,這個(gè)情況也被證實(shí)。

77、冷卻液的作用的研究在這些實(shí)驗(yàn)中持續(xù)著。n = 95 rpm;Vp = 100% Vg; δ = 4 mm,進(jìn)行這些實(shí)驗(yàn)。其他條件和前面實(shí)驗(yàn)相同。當(dāng)冷卻液周期性的注射到加工間隙中時(shí),去除余量增加,而且在冷卻液持續(xù)流動(dòng)的情況下增加的更多,如圖5a。冷卻液的流動(dòng)能夠保證在加工間隙中的工件表面的各個(gè)部分都能得到冷卻,而提高生產(chǎn)力。但是過多的冷卻液也會(huì)降低生產(chǎn)力,因?yàn)閺?qiáng)大的冷卻液的水流會(huì)沖刷掉加工間隙里面的粉末(圖5b)。對(duì)于良好的表面粗糙度冷卻

78、液的出現(xiàn)顯得很重要。MAF工作中,表面粗糙度Ra取決于提供冷卻液的方法,在圖5c中。MAF加工時(shí),不使用流動(dòng)的冷卻液,而周期性注入來進(jìn)行冷卻,使表面粗糙度變得更糟。在圖5c,沒有用冷卻液的時(shí)候得到了最差的粗糙度。在工件表面粘附的粉末的組成的原因也許能解釋為由MAF工作時(shí)產(chǎn)生的熱量決定的。沒有冷卻液的加工比周期性注射冷卻液的加工暴露了更多劇烈的表面破壞(圖5c)。粘附力隨</p><p>  所以合適的去處毛刺條件

79、,從實(shí)驗(yàn)中能夠總結(jié)出:感應(yīng)器EMI-2轉(zhuǎn)動(dòng)頻率 n = 180 rpm; f = 342 mm/min;nosc = 500 min?1; Aosc = 2.5 mm;;δ = 4 mm; Vp = 1.3Vg;冷卻方法——用流速為1l/min的連續(xù)不斷的冷卻液冷卻。未經(jīng)研磨的鐵粉小微粒在這里可以作為磁粉使用。在決定了條件的MAF去毛刺實(shí)驗(yàn)中,高度1.5-2.5微米的毛刺能在15秒內(nèi)去除。</p><p>  4

80、.MAF加工后的邊緣和表面質(zhì)量的分析</p><p>  被鉆孔后的樣本的孔邊緣有幾個(gè)缺點(diǎn):毛刺,刮痕,粗糙的表面粗糙度(圖6)。磁性研磨加工法能去除所有這些缺點(diǎn)。去除這些缺點(diǎn)花的時(shí)間比去除毛刺的更長。例如在一次進(jìn)給的作用后毛刺能全部去除,而周圍的邊緣則需要2次或更多次才能完成。在第一次,第二次,第三次和第四次作用后的孔的周圍邊緣情況在圖7a-c中。我們能夠看到,控制邊緣的范圍大小是有可能的:MAF的周期越長,范

81、圍就越大。MAF加工前后的邊緣的質(zhì)量如圖8。鐵粉被用來去除毛刺和周圍的棱角。</p><p>  在MAF去毛刺以及周圍的棱角之后,最上面的表面被磨光了。MAF的對(duì)表面粗糙度的條件的影響因素已經(jīng)在上面描述了。MAF加工具有自己的特點(diǎn):工件表面在加工過程中會(huì)產(chǎn)生電荷,并且他促進(jìn)了工件表面的粉末的結(jié)合。我們?cè)谏厦嬲f了,表面活性冷卻液能阻礙粘附力。這個(gè)實(shí)驗(yàn)在這些條件下完成:n = 180 rpm;f = 127 mm/

82、min;nosc = 500 min?1;Aosc = 2.5 mm; B = 048 T;MAF周期為2個(gè)敲擊聲。冷卻液(切削液)周期性的注入間隙中。使用了兩種粉末:亞甲基鐵(50%)和三氧化二鋁(50%)的混合粉末;鐵粉。當(dāng)使用混合粉末進(jìn)行加工的時(shí)候,在樣本表面的最上層有砂輪切割的痕跡(圖9a)。使用鐵粉的時(shí)候就沒有出現(xiàn)這些痕跡。他們應(yīng)該是由堅(jiān)硬的微粒造成的——混合粉末中的二氧化三鋁,是它破壞了表面粗糙度。然而這兩種方法去除的余量幾

83、乎差不多。我們發(fā)現(xiàn)在用酒精清洗后仍然有一些顆粒依附在加工件表面,而表面的化學(xué)成分已經(jīng)被改變了。這些依附的微粒在圖10中顯示。工件表面的化學(xué)成分在MAF加工過后被改變了。碳元素和鉺元素消失了,硅的含量減少或者消失了。MAF加工使混合粉末中的二氧</p><p><b>  5.結(jié)論</b></p><p> ?。?)去毛刺電磁感應(yīng)器和用電槍的表面拋光之前就開展了。通過改

84、變主要的參數(shù),我們研究了更多的詳細(xì)的特征。</p><p> ?。?)作為去毛刺的條件,粉末的體積,間隙的高度,感應(yīng)器的轉(zhuǎn)動(dòng)頻率,進(jìn)給速度和冷卻液的供給方法都通過實(shí)驗(yàn)進(jìn)行了研究。</p><p> ?。?)除了去毛刺的性能,我們還要研究了對(duì)表面粗糙度的影響。為了改善粗糙度,應(yīng)用了幾種的冷卻液。連續(xù)流動(dòng)的冷卻液效果最好。</p><p> ?。?)在MAF加工后表面殘

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論