版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 中文4730字</b></p><p><b> 譯 文</b></p><p> 學(xué) 院: 機(jī)電與汽車學(xué)院 </p><p> 專 業(yè): 熱能與動(dòng)力工程 </p><p> 學(xué) 號(hào):
2、 </p><p> 姓 名: </p><p> 指導(dǎo)教師: </p><p> 2014年 5月 5日</p><p> 一些中速柴油發(fā)動(dòng)機(jī)研究的實(shí)驗(yàn)經(jīng)驗(yàn)</p><p> 文摘: 這篇
3、文章的目的是探究一種中速發(fā)動(dòng)機(jī)的一些實(shí)驗(yàn)結(jié)果。這里事實(shí)上是進(jìn)行了單缸共軌柴油機(jī)的研究, 這是研究的方向。其主要特征是氣體交換閥門(mén)調(diào)節(jié)時(shí)間系統(tǒng)是完全可調(diào)的電液系統(tǒng),利用發(fā)動(dòng)機(jī)潤(rùn)滑油在250帕?xí)r打開(kāi)氣體交換閥門(mén)。此外這個(gè)引擎沒(méi)有渦輪增壓器, 但是一個(gè)單獨(dú)的空氣壓縮機(jī)供應(yīng)系統(tǒng)可以改變進(jìn)氣管空氣的狀況; 在引擎后部、有一個(gè)蝶狀的改變排氣背壓的管子。燃油系統(tǒng)是一種常見(jiàn)的軌道類型:軌道的壓力、 噴射時(shí)刻、噴射時(shí)間是開(kāi)始完全可調(diào)。這些研究進(jìn)行了所有的
4、EVE發(fā)動(dòng)機(jī)可能性狀況研究: 不同的負(fù)載、管道壓力,開(kāi)始噴射時(shí)刻和邊界條件都是可調(diào)的。此外,該實(shí)驗(yàn)對(duì)氣體交換閥門(mén)的液壓系統(tǒng)的不同時(shí)間響應(yīng)性能進(jìn)行了檢測(cè)、評(píng)價(jià)。</p><p><b> 介紹</b></p><p> 由于相關(guān)部門(mén)日益嚴(yán)格的限制,高油價(jià)和減少排放控制帶來(lái)的挑戰(zhàn)成為內(nèi)燃機(jī)的發(fā)展必須面對(duì)的越來(lái)越富有挑戰(zhàn)性的課題。在這些方面,如何研究使得在配置最優(yōu)化基礎(chǔ)
5、上得到的完美結(jié)果成為了一種大挑戰(zhàn)。</p><p> 極限引擎是一個(gè)四沖程單缸大孔徑中速研究的發(fā)動(dòng)機(jī),這種柴油機(jī)與Wärtsilä W20氣缸尺寸相似,它是由芬蘭的阿爾托大學(xué)的國(guó)際內(nèi)燃機(jī)研究小組設(shè)計(jì)的。引擎框架、曲軸和主要軸承能承受缸內(nèi)最大壓力為400 帕[1]。EVE有電液閥執(zhí)行機(jī)構(gòu)(EHVA) [2] 代替?zhèn)鹘y(tǒng)的凸輪軸機(jī)制,該系統(tǒng)允許改變高氣體交換的彈性閥參數(shù)。事實(shí)上,它可能改變開(kāi)啟和關(guān)
6、閉時(shí)間的氣體交換閥,以及改變其最大氣門(mén)升程以及它們的開(kāi)啟和關(guān)閉提升斜率。閥門(mén)執(zhí)行機(jī)構(gòu)受作用于潤(rùn)滑系統(tǒng)的加壓油(250 bar)的控制.EVE連接有一個(gè)電動(dòng)馬達(dá),這樣可以運(yùn)行在機(jī)動(dòng)模式。燃油噴射系統(tǒng)是可調(diào)的共軌式軌道的壓力, 以及噴射時(shí)間和持續(xù)時(shí)間。根據(jù)邊界條件, 如進(jìn)氣壓力、溫度以及排氣壓力,發(fā)動(dòng)機(jī)可以被一個(gè)空氣供給體制和一個(gè)反饋壓力節(jié)流閥所控制,這樣就允許運(yùn)行的渦輪增壓器具有無(wú)限配置的狀況下運(yùn)行。迄今為止,除了提到的部件的數(shù)量外,同時(shí)
7、所有的壓力和溫度的輔助系統(tǒng)(LT水、HT水和潤(rùn)滑油)都是遠(yuǎn)程調(diào)節(jié)的。所有這些特點(diǎn)使本發(fā)動(dòng)機(jī)的研究成為出色的研究平臺(tái)。</p><p> 本文的研究重點(diǎn)是對(duì)EVE提出一些可以利用的可行性,不同的氣體交換配氣相位,噴霧參數(shù)和邊界條件都被測(cè)試。用先前的測(cè)試運(yùn)行, 在那里分析比較已經(jīng)生產(chǎn)出的相應(yīng)商業(yè)引擎,記錄下相應(yīng)的負(fù)荷變化。</p><p> 首要工作描述的是米勒的一個(gè)應(yīng)用技術(shù)。米勒循環(huán)[3
8、]可以用來(lái)降低NOx: 它是通過(guò)適時(shí)改變閥門(mén)定時(shí)減少發(fā)動(dòng)機(jī)的壓縮比的。</p><p> 這可以通過(guò)在比較早的進(jìn)氣行程的時(shí)候關(guān)閉進(jìn)氣門(mén) (EIVC)來(lái)實(shí)現(xiàn),可以通過(guò)在壓縮行程關(guān)閉進(jìn)氣閥很晚(LIVC),也可以通過(guò)在進(jìn)氣結(jié)束后的壓縮行程開(kāi)啟簡(jiǎn)要的排氣閥實(shí)現(xiàn)。本文使用第一種方法:事實(shí)上引用Ivc的氣門(mén)定時(shí)時(shí)非常接近上止點(diǎn)時(shí)刻, 關(guān)閉閥門(mén)等40多個(gè)CAD BBDC是很先進(jìn)的。米勒技術(shù)首先被用在EVE上。根據(jù)以前的經(jīng)驗(yàn)
9、(見(jiàn)例如[4 ~ 7),</p><p> 一項(xiàng)新的策略在這里將展開(kāi)討論。這些保持在氣缸的氣團(tuán)時(shí)間與氣門(mén)的保持時(shí)間是一致的。質(zhì)量不能被測(cè)量,但是卻能得到一維模擬模型,在這項(xiàng)工作中用三種不同載荷進(jìn)行試驗(yàn)。</p><p> 表1 EVE 規(guī)格</p><p> 缸徑200mm 行程 280mm 連桿 610mm 排量8796 cc</p&g
10、t;<p> 發(fā)動(dòng)機(jī)轉(zhuǎn)速900r/min 理論壓縮比15.0 噴油器提示(米勒測(cè)試)8孔x 0.34毫米 噴油器提示(噴射試驗(yàn))×0.30毫米9洞 所用燃料LFO (43 MJ /公斤)</p><p><b> 研究1:米勒測(cè)試</b></p><p> 這些測(cè)試的主要目的是測(cè)試使發(fā)動(dòng)機(jī)在不同的負(fù)荷下的閥門(mén)作用時(shí)間導(dǎo)
11、致的NOx很大的降低量。在實(shí)驗(yàn)裝置中,具有流體模擬功能的發(fā)動(dòng)機(jī)仿真已經(jīng)制作出來(lái)了,需要通過(guò)找到這些邊界條件來(lái)進(jìn)行仿真。沿比較以前的W20也被制作出來(lái)了,作用 100%, 75% 和 50% 負(fù)載進(jìn)行試驗(yàn)。針對(duì)每種情況密封的空氣質(zhì)量也一直不斷沿著參考的時(shí)刻而變化。同時(shí)油耗一直不斷, 因?yàn)橐骖~定功率視為平均有效值,并且油量在每一個(gè)測(cè)試中都是不變的。此外,充氣溫度和模擬渦輪增壓器的效率沒(méi)有改變。</p><p>&l
12、t;b> 氣門(mén)定時(shí)</b></p><p> 實(shí)驗(yàn)對(duì)不同的一些氣門(mén)作用時(shí)刻進(jìn)行了測(cè)試,以便驗(yàn)證EHVA運(yùn)行情況。除了IVC外所有的參數(shù)都保持不變。由于EHVA[2]的基礎(chǔ)上的液壓技術(shù),正在作用的IVC升程的幅度的平滑誤差小于1mm. 雖然不同的進(jìn)氣定時(shí)被設(shè)置,但事實(shí)上,在這兩個(gè)米勒測(cè)試周期內(nèi)其結(jié)果看起來(lái)幾乎相同, 因?yàn)檫@個(gè)原因, 進(jìn)氣門(mén)的關(guān)閉可進(jìn)行計(jì)算機(jī)模擬,而當(dāng)升程是1毫米是,就叫做IVC
13、1。當(dāng)提升進(jìn)氣閥關(guān)閉后,被系統(tǒng)獲得的最大升程就減小了。因此, 對(duì)測(cè)試時(shí)間(視為IVC1)沒(méi)有比BBDC 42計(jì)算機(jī)輔助設(shè)計(jì)(CAD) 更先進(jìn)的了。圖1給出了來(lái)自這三個(gè)時(shí)間的研究:</p><p> 1。參考時(shí)間,有5 CAD BBDC的IVC1 和最大值為17.1的進(jìn)氣升程;</p><p> 2、高級(jí)計(jì)時(shí),有35 CAD BBDC的IVC1 和最大值為16.5的進(jìn)氣升程</p&
14、gt;<p> 3。最先進(jìn)的米勒計(jì)時(shí),IVC1 42 CAD BBDC和最大進(jìn)氣閥抬的15.8毫米。</p><p> 排氣時(shí)間和IVO在每個(gè)運(yùn)行頂點(diǎn)是恒定的;最大的排氣氣門(mén)升程為17.1毫米。排氣關(guān)閉和打開(kāi)斜度是不變的:這是因?yàn)樵贓VE中,出于安全的原因,在每一個(gè)曲軸轉(zhuǎn)角中氣門(mén)和活塞距離保持大于或等于4毫米。</p><p> 圖1——米勒測(cè)試:測(cè)試的氣門(mén)定時(shí)<
15、/p><p><b> 仿真模型</b></p><p> 仿真采用發(fā)動(dòng)機(jī)仿真進(jìn)行,一維的流體動(dòng)力的程序用于預(yù)測(cè)發(fā)動(dòng)機(jī)的性能。由于EVE系統(tǒng)沒(méi)有渦輪增壓器, 發(fā)動(dòng)機(jī)仿真模型的一個(gè)基本用處就是找出發(fā)動(dòng)機(jī)裝置使EVE邊界條件可以相當(dāng)類似于一個(gè)真正的發(fā)動(dòng)機(jī)。對(duì)渦輪增壓器的數(shù)學(xué)模型進(jìn)行了模擬,分別模擬渦輪和壓縮機(jī)。該模型是需要找到充入的空氣壓力、排氣壓力;此外,負(fù)責(zé)設(shè)定空氣溫
16、度在每個(gè)試驗(yàn)中是相同的。而用于計(jì)算壓縮機(jī)和渦輪動(dòng)力吸入的大氣和廢氣壓力的方程式如下 [8]:</p><p> 壓縮功率(KW) 壓縮效率 進(jìn)氣流量 (kg/s)</p><p> 進(jìn)氣比熱[kJ /公斤K] 環(huán)境溫度[K] 空氣壓縮比</p><p> 空氣比熱 汽輪功率[kW) 渦輪效率</p><
17、;p> 尾氣流[公斤/ s]. 廢氣比熱[kJ /公斤K] </p><p> 廢氣溫度[K] 尾氣膨脹率 廢氣比熱</p><p> 這臺(tái)機(jī)器效率總TC效率為0.65。該值是根據(jù)以前的測(cè)試數(shù)據(jù)計(jì)算出的,在這項(xiàng)工作中,這是在每一個(gè)普通負(fù)載理想的平均估計(jì)效率。此外,另一個(gè)在計(jì)算模型的假設(shè)是:</p><p> ?環(huán)境條件: 298 K
18、, 是1.005 kJ /kgk、是1.4。</p><p> ?上游壓縮機(jī)壓力和下游渦輪壓力1bar;因此,和也是測(cè)試值空氣壓力、廢氣的排氣壓力,用帕作單位。</p><p> ?壓縮機(jī)模型裝置設(shè)在進(jìn)氣管的面前,而渦輪模型在汽車排氣管道靠近調(diào)節(jié)閥門(mén)處。當(dāng)閥門(mén)定時(shí)改變時(shí),控制裝置可以在發(fā)動(dòng)機(jī)運(yùn)作中得到相應(yīng)流量運(yùn)作情況。</p><p><b> 特別
19、是:</b></p><p> o因?yàn)橥瑯訑?shù)量的燃料注入,SOI被調(diào)整以便適應(yīng)同樣的發(fā)動(dòng)機(jī)功率匹配;</p><p> o進(jìn)氣壓力也被調(diào)整,以便達(dá)到相同的收集到的氣體質(zhì)量;</p><p> o 根據(jù)施加的效率改變排氣壓力以平衡模擬TC;</p><p> 模擬的結(jié)果繪出了如下面的圖所示。特別的,進(jìn)氣管空氣壓力、泵氣損失和
20、噴射也被記錄了。</p><p> 為了保持相同的空氣質(zhì)量在氣缸蓋內(nèi), 當(dāng)進(jìn)氣時(shí)間減少時(shí)充氣氣壓需要增加,也就是說(shuō)IVC是先進(jìn)的。在圖2中可以看出, 在高負(fù)載時(shí)他的數(shù)值超過(guò)了來(lái)自相關(guān)情況下的1.5帕。</p><p> 圖2——米勒模擬結(jié)果:進(jìn)氣壓力 圖3——米勒模擬結(jié)果:泵送平均有效壓力</p><p> 圖四——米勒模擬結(jié)果:噴射時(shí)刻 圖5—米勒模擬
21、結(jié)果:指示的氮氧化物值</p><p><b> 試驗(yàn)結(jié)果</b></p><p> 測(cè)量試驗(yàn)進(jìn)行了快速和慢速兩個(gè)試驗(yàn)。下面的圖表有關(guān)工作的主要成果進(jìn)行了說(shuō)明。由于EVE具有比多缸發(fā)動(dòng)機(jī)較高的機(jī)械損失[9], 結(jié)果也表明出來(lái)了這一點(diǎn)。在每一個(gè)測(cè)試負(fù)荷下NOx目標(biāo)值均降低 了(圖5)。最好的結(jié)果來(lái)自部分荷載:事實(shí)上,50%的減少量是3.5克/千瓦時(shí)的ISNOx, 這
22、意味著40%的相應(yīng)值,這是通過(guò)標(biāo)準(zhǔn)時(shí)間獲得的(圖6)。這些大幅降低實(shí)現(xiàn)是由于利用了早期的IVC(米勒技術(shù))和以后SOI技術(shù)。在之前的EVE運(yùn)行測(cè)試中相比組合使用的相同時(shí)間米勒技術(shù)。</p><p> 唯一可能延遲的是SOI會(huì)指示氮氧化物的減少相比較使用組合米勒技術(shù)在相同的時(shí)間內(nèi),這僅僅使用的低速SOI能有效減少NOx 的產(chǎn)生。另一方面,實(shí)現(xiàn)同樣的功率輸出需要更多的燃料——即要求長(zhǎng)時(shí)間噴射燃油。這樣導(dǎo)致的一個(gè)后果
23、是非常高的廢氣溫度以及可能導(dǎo)致的不穩(wěn)定燃燒。這些效果對(duì)整體經(jīng)濟(jì)的發(fā)動(dòng)機(jī)而言太消極了,因此,其他方式——例如使用米勒循環(huán)——都必須經(jīng)過(guò)研究,就是為了讓它達(dá)到在實(shí)際應(yīng)用的結(jié)果中可以接受。</p><p> Some Experimental Experience Gained With a Medium-Speed Diesel Research Engine</p><p> Abstr
24、act: The objective of this paper is to show some experimental results gained from a medium-speed research engine. The study is in fact carried out with a single-cylinder common rail diesel engine (EVE), which is used onl
25、y for research purposes. Its main feature is that the gas exchange valve timing is completely adjustable with an electro-hydraulic system that uses the engine lubrication oil at 250 bars to open the gas exchange valves.
26、In addition the engine does not have a turbocharger, bu</p><p> Two studies are described in this paper. The first is an application of the Miller technique, advancing the closure of the intake valve. The p
27、urpose of this work is a massive reduction of the NOx emission with no penalties in fuel consumption. The setup of the loads with Miller cycle is found with the help of a simulation model. The results show that high NOx
28、reduction is achievable with the used strategy at every run load but the greatest decrease occurs at partial load. The major drawback is t</p><p> INTRODUCTION</p><p> The development of the i
29、nternal combustion engines has to face more and more the challenging issues of lowering the fuel consumption because of high oil price and of emissions reduction, due to the increasingly stricter limits imposed by the r
30、egulating authorities. In these respects the possibility to optimize the engine operating parameters in order to find the most performing configurations is a big advantage.</p><p> The Extreme Value Engine
31、(EVE) is a four-stroke single-cylinder large bore medium-speed research engine. The engine has similar cylinder dimensions with Wärtsilä W20 engine and it is designed by the Internal Combustion Engine Research
32、Group of Aalto University in Finland. The engine frame, the crankshaft and the main bearings can withstand incylinder maximum pressure of 400 bar [1]. The EVE has electro-hydraulic valve actuators (EHVA) [2] instead of t
33、raditional camshaft mechanism. This system pe</p><p> The studies in this paper are focused to present some of the possibilities that can be exploited with EVE. Different gas exchange valve timing, injectio
34、n parameters and boundary conditions are tested.Using previous test runs, where the comparison with its corresponding commercial engine has been carried out, the reference loads are drafted out.</p><p> The
35、 first work described is an application of the Miller technique. The Miller cycle [3] is used to reduce NOx: it consists in a reduction of the effective engine compression ratio by opportunely changing the valve timing.
36、This can be achieved by closing the intake valve very early in the intake stroke (EIVC), by closing the intake valve very late in the compression stroke (LIVC), by opening briefly the exhaust valve after the intake closu
37、re in the compression stroke. In this paper the first met</p><p> Table 1 EVE specifications</p><p> Cylinder Bore 200 mm Stroke 280 mm Connecting Rod 610 mm Swept Volume 8
38、796 cc </p><p> Engine Speed 900 rpm Nominal Compression Ratio 15.0 Injector tip (Miller test) 8 holes x 0.34 mm</p><p> Injector tip (Injection test) 9 holes x 0.30 mm
39、 Fuel used LFO (43 MJ/kg)</p><p> STUDY I: THE MILLER TESTS</p><p> The main purpose of these tests is a massive reduction of NOx using different valve timings at different en
40、gine loads. Before the experimental tests, the 1-D simulations with the fluid-dynamic code GT-Power have been carried out. These are needed to find the boundary conditions to be used in the runs.</p><p> Al
41、ong the comparison with W20 previously carried out, 100%, 75% and 50% load have been run. For each case the trapped air mass has been kept constant along the reference timing. Also the fuel consumption has been constant
42、because the engine power – considered as IMEP - and the fuel quantity are the same for every case. In addition, the charge air temperature and the efficiency of the simulated turbocharger have not been changed.</p>
43、<p> The Valve Timing</p><p> Several valve timings have been tested to validate the operation of EHVA. All the parameters are kept constant except the IVC. Due to the hydraulics of the EHVA [2], ad
44、vancing the IVC the slope of the lift becomes very flat at lifts lower than 1 mm. In fact in the two tested Miller cycles the IVC looks to be almost the same, although different intake timing is set. For this reason, the
45、 intake valve closing is considered as the CAD when the lift is 1 mm and it is called IVC1. When advancing the c</p><p> 1. the reference timing, with IVC1 of 5 CAD</p><p> BBDC and maximum in
46、take valve lift of 17.1 mm;</p><p> 2. an advanced timing, with IVC1 of 35 CAD BBDC and maximum intake valve lift of 16.5 mm;</p><p> 3. the most advanced Miller timing, with IVC1 of 42 CAD B
47、BDC and maximum intake valve lift of 15.8 mm.</p><p> The exhaust timings and the IVO are constant for every run point; the maximum exhaust valve lift is 17.1 mm. The exhaust closing and the intake opening
48、slope are not constant: this is because in EVE, for safety reasons, the distance between the gas exchange valves and the piston is kept greater or equal to 4 mm at every crank angle.</p><p> The Simulation
49、Model</p><p> The simulations are carried out with GT-Power, a one-dimensional fluid-dynamic program used for predicting engine performance. Since the EVE system has not any turbocharger, the GT-Power simul
50、ation model is a fundamental tool to find out the engine set-up so that the EVE boundary conditions can be quite similar to a real engine’s. The turbocharger is simulated with a mathematical model that treats separately
51、the action of the compressor and of the turbine. This model is needed to find the charge</p><p> The machine efficiencies are so that the total TC efficiency is 0.65. This value is calculated from data of t
52、he previous tests and it is an average estimation of the efficiency at every load considered in this work. Furthermore, the other assumptions in the calculation model are:</p><p> ?The ambient conditions:
53、is 298 K, , is 1.005 kJ/kg K, is 1.4.</p><p> ?The upstream compressor pressure and the downstream turbine pressure are 1 bar;thereforeand represent also the values of the charge air pressure and of the ex
54、haust backpressure, expressed in bar.</p><p> ? The compressor model is set before the intake pipe and the turbine’s model after the exhaust pipe nearby the regulating valve. The controls permit to find the
55、 engine set-up to use in the test runs when the valve timing is modified. In particular:</p><p> o the SOI is adjusted to match the same engine power, since the same amount of fuel is injected;</p>&
56、lt;p> o the charge air pressure is adjusted to achieve the same air trapped mass;</p><p> o the exhaust pressure is changed to balance the simulated TC along the imposed efficiency.</p><p>
57、 The results of the simulations are plotted below. In particular, the intake charge air pressure, the pumping losses and the start of injection are reported.</p><p> To maintain the same air mass trapped i
58、n the cylinder, the charge air pressure needs to be increased when the intake duration is reduced, i.e. IVC is advanced. In figure 2 it can be seen that at high load its value is raised more than 1.5 bar from the referen
59、ce case.</p><p> The Test Results</p><p> Both fast and slow measurements have been taken during the tests. Here below the charts concerning the main outcomes of the work are illustrated. Sinc
60、e the EVE has higher mechanical losses than a multi-cylinder engine [9], the results are here referred to the indicated power. The aimed NOx reduction is achieved at every tested load (figure 5). The best results come fr
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 柴油發(fā)動(dòng)機(jī)外文翻譯
- 發(fā)動(dòng)機(jī)外文翻譯
- 柴油發(fā)動(dòng)機(jī)
- 柴油發(fā)動(dòng)機(jī)
- 柴油發(fā)動(dòng)機(jī)
- 外文翻譯--柴油發(fā)動(dòng)機(jī)發(fā)展和耐久性
- 汽車發(fā)動(dòng)機(jī)外文翻譯
- 外文翻譯--發(fā)動(dòng)機(jī)連桿
- 外文翻譯--柴油發(fā)動(dòng)機(jī)發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動(dòng)機(jī)發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動(dòng)機(jī)發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動(dòng)機(jī)發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動(dòng)機(jī)發(fā)展和耐久性.pdf
- 外文翻譯--柴油發(fā)動(dòng)機(jī)發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動(dòng)機(jī)發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動(dòng)機(jī)發(fā)展和耐久性.doc
- 外文翻譯--柴油發(fā)動(dòng)機(jī)發(fā)展和耐久性.pdf
- 外文翻譯--柴油發(fā)動(dòng)機(jī)發(fā)展和耐久性.doc
- 柴油發(fā)動(dòng)機(jī)虛擬實(shí)驗(yàn)系統(tǒng)研究.pdf
- 柴油發(fā)動(dòng)機(jī) (2)
評(píng)論
0/150
提交評(píng)論