版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution </p><p> D. Fornasiero , D. Fullston , C. Li, J. Ralston</p><p>
2、 a Ian Wark Research Institute, the ARC Special Research Centre for Particle and Material Interfaces, Uniersity of South Australia, The Mawson Lakes Campus, Mawson Lakes, S.A. 5095,Australia Rio Tinto Technology Develop
3、ment, Research Ae., Bundoora, Vic., 3083, Australia </p><p> Received 10 March 2000; accepted 19 July 2000 </p><p><b> Abstract</b></p><p> Selective oxidation of min
4、erals was investigated as a means to separate by flotation the copper sulfide minerals of chalcocite, covellite and chalcopyrite from the arsenic copper sulfide minerals of enargite and tennantite in mixed mineral
5、 systems. It was found that a separation of these minerals could be feasible after selective oxidation of their surfaces in slightly acidic pH conditions, or after oxidation and selective
6、dissolution of the surface oxi</p><p> Keywords: Selective flotation; Copper sulfide minerals; Tennantite; Enargite; Oxidation; X-ray photoelectron spectroscopy </p><p> 1. Introduction &
7、lt;/p><p> Arsenic is an undesirable element that causes serious toxicological and environmental problems in smelting of arsenic-containing minerals e.g., Padilla et al., 1998; Dutr’e and Vandecast
8、eele, 1995 . Although hydrometallurgy or pyrometallurgy could be used to remove this element, increasing severity of environmental legislation has resulted in a progressive reduction of the amount of arsenic allowabl
9、e in processing bi-products(Morizot and Ollivier, 1993). As a result, hig</p><p> It would be more economically and environmentally beneficial to remove the minerals containing arsenic at an earlie
10、r stage such as during flotation. Their separation is nevertheless difficult as they generally have similar flotation behaviour to the valuable minerals with which they are associated. This is the case in separating ars
11、enopyrite (FeAsS) from pyrite, or removing enargite(Cu3 AsS4)and tennantite(Cu12 As4 S13)from covellite (CuS ), chalcocite(Cu2 S) and chalcopyrite(CuFeS2). Apart</p><p> The oxidation behaviour of non-a
12、rsenic copper sulfide minerals(chalcocite, covellite and chalcopyrite) is well established (e.g., Richardson and Walker, 1985; Hamilton and Woods, 1984) ,whereas only a limited amount of literature is available on the ox
13、idation of enargite and tennantite (Fullston et al., 1999a; Cordova et al., 1997; Mielczarski et al., 1996a) . A recent study on these minerals has shown that their rate of oxidation at pH 11.0 follows the order: cha
14、lcocite >tennantite >enargit</p><p> Enargite and tennantite often occur at various quantities in copper deposits with chalcocite, covellite or chalcopyrite. being the major copper minerals. In this s
15、tudy, the separation by flotation of chalcocite, covellite or chalcopyrite from enargite or tennantite was investigated in mixed mineral systems by means of oxidation treatments. A two mineral system was preferred in th
16、is investigation to identify the flotation performance of each non-arsenic mineral gainst that of enargite or tennan</p><p> 2. Experimental </p><p> All chemicals were of analytical grade qu
17、ality. High purity gas (nitrogen or oxygen from CIG Ltd). was scrubbed by bubbling it through a silica dispersion. High purity water, produced by reverse osmosis, two stages of ion exchange and two stages of activated
18、carbon prior to final filtration, was used in all experimental work. This water was ‘pretreated’ at the required pH with KNO3(0.01 mol dm-3) . as electrolyte and by bubbling the required gas into it. </p><p>
19、; Chalcocite, covellite and chalcopyrite samples were purchased from Ward’s Natural Science Establishment(USA ). Enargite and tennantite samples were supplied by Continental Minerals(USA) . The chemical analysis of thes
20、e samples is reported in Table 1. No significant amount of impurities were detected on the mineral surface by XPS measurement before and after the grinding stage, except for a noticeable amount of iron in the enargite
21、and tennantite samples. Optical microscopy examination of pol</p><p> Flotation was conducted using a modified Partridge and Smith column (Partridge and Smith,1971) .The mineral combinations used in mixed
22、 mineral flotation experiments were enargite–chalcocite,enargite–covellite,enargite–chalcopyrite,tennantite–chalcocite,tennantite–covellite and tennantite–chalcopyrite(1:1 weight ratio) . Mineral samples (5 g dm -3) .
23、were wet ground separately in ‘pretreated’ KNO3 solution with a ceramic mortar and pestle (d50 of 16 mm). and, then transferred into a stirred </p><p><b> Table 1 </b></p><p> c
24、ollector adsorption time, the mineral slurry was transferred into the flotation column. Nitrogen gas was introduced into the flotation column at a flow rate of 50 cm3 miny1. Concentrates were colle
25、cted after 1, 2, 4 and 8 min of flotation time and filtered through pre-weighed filters. The amount of copper and arsenic was determined by Inductively Coupled Plasma (ICP). analysis. The ratio of arsenic to c
26、opper was then used to calculate the experimental percentag</p><p> XPS measurements were obtained with a Perkin Elmer Physical Electronics Division (PHI). 5100 spectrometer using an MgK a irradiation X-ra
27、y source operated at 300 W. A pass energy of 17.9 eV was used for all elemental spectral regions. The pressure in the analyser chamber was 10-7 Pa. The energy scale was calibrated using the Fermi edge and the 4f7/
28、2 line (BE s84.0 Ev) for gold,whilst the retardation voltage was calibrated with the position of the Cu (2p3/2) peak(BE s932.67 Ev</p><p> 3. Results and discussion</p><p> 3.1. Mi
29、neral flotation in non-oxidising conditions </p><p> At pH 5.0, N2 conditioning resulted in high flotation recoveries of all the minerals without selectivity for all the pairs of minerals
30、 Fig. 1 without H2O2 .. Under these non-oxidising conditions, only a small amount of oxidation products was found on the surface of all the copper minerals investigated (Table 2) . As an example, the As (3d)
31、 and Cu (2p) XPS spectra of tennantite are shown in Figs. 2 and 3, respectively. Each spectrum was deconvoluted into indivi</p><p> At pH 11.0, the flotation results were more complex with relatively go
32、od separations of covellite from tennantite, tennantite from chalcopyrite, enargite from chalcopyrite and enargite from chalcocite (Fig. 4 without H2 O2) .. Although these results are satisfactory only for an ore syste
33、m containing some of the minerals present in these pairs of minerals, they also indicate that a poor copper–arsenic mineral separation will be obtained if the full suite of copper minerals is present </p>
34、<p> Fig. 1. Flotation recoveries of the empty circles. chalcocite–enargite, empty squares. covellite–enargite, empty triangles. chalcopyrite–enargite, fill ecircles. chalcocite–tennantite, filled squares.
35、 covellite–ten- nantite and filled triangles. chalcopyrite–tennantite mixed mineral system sat 1, 2, 4 and 8 min at pH 5.0. without 20 min N2 conditioning and with 0.013% wrv H2O2(60 min O2 conditioning
36、) . ([mineral]=s5 g dm -3; [DEDTP]= 2 х10-5 mol dm-3 ) </p><p> 3.2. Mineral flotation in the presence of hydrogen peroxide </p><p> A high degree of oxidation of the copper and arsenic surf
37、ace species occurred when the minerals were conditioned in oxygen and with H2O2 . As an example, Tables 2 and 3 shows the trends in surface oxidation for tennantite as the oxidising condition was changed from nitr
38、ogen to oxygen and to hydrogen peroxide. These surface analysis results are in agreement with the depression of the flotation of all the minerals observed in the presence of H2 O2 at a pH value of 11.0, with maximum r
39、eco</p><p> Fig. 1 shows that, conditioning the minerals with H2O2 at pH 5.0 generally produced a higher flotation recovery of the non-arsenic minerals than the arsenic minerals, and therefore a good m
40、ineral separation. This was particularly the case for the mineral systems containing enargite. Recoveries achieved for the non-arsenic minerals ranged </p><p><b> Table 2 </b></p><p&
41、gt; Proportions of copper and arsenic oxidation products measured by XPS on the surface of tennantite at pH 5.0 as a function of conditioning treatment 【H2 O2】 = s0.013%. </p><p> Fig. 2. As(3d )XPS spect
42、ra of tennantite conditioned for 60 min with oxygen gas and H2O2. The dots represent the experimental spectra and the full lines represent the calculated spectra obtained by summing Gaussian bands
43、 – – – . </p><p> from 47% to 82%, and from 40% to 53% for the arsenic minerals. The XPS results in Figs. 2 and 3, and Tables 2 and 3 show that the proportion of copper oxide on the &l
44、t;/p><p> Fig. 3. Cu(2p3/2) XPS spectra of tennantite conditioned for 60 min with oxygen gas and H2O2. The dots represent the experimental spectra and the full lines represent the calcula
45、ted spectra obtained by summing Gaussian bands – – – . </p><p><b> Table 3 </b></p><p> Proportions of copper and arsenic oxidation products measured by XPS on the surf
46、ace of tennantite at pH 11.0 as a function of conditioning treatment ([H2 O2 ]= s0.013%). </p><p> mineral surface is less at pH 5.0 than at pH 11.0, hence the higher flotation recoveries of the non-arseni
47、c copper minerals obtained at pH 5.0 than at pH 11.0. The increased mineral separation observed at pH 5.0 than at pH 11.0 is also the result of an increased proportion of surface arsenic oxide species at pH
48、 5.0 Figs. 2 and 3, and Tables 2 and 3 . This last result is in agreement with the decrease in dissolution of arsenic oxide observed by Marasing</p><p> Fig. 4. Flotation recov
49、eries of the (empty circles). chalcocite–enargite,(empty squares). covellite–enargite, empty triangles. chalcopyrite–enargite, filled circles. chalcocite–tennantite, filled squares. covellite–tennantite and fille
50、d triangles. chalcopyrite–tennantite mixed mineral systems at 1, 2, 4 and 8 min at pH 11.0 without 20 min N2 conditioning. and with 0.013% w/v H2O2(60 min O2 conditioning; [EDTA]= 4.5х10-4 mol dm-3.[Mineral] =5 g dm-
51、3; [DEDTP]=2х10 -5 mol dm-3. Ethylen</p><p> The XPS analysis was also conducted on the flotation concentrate and tail fractions of the chalcocite–enargite system to confirm the previous interpretations. F
52、or mineral mixtures, a detailed analysis of the XPS spectra, as in Figs. 2 and 3, is rather complicated Clarke et al., 1995b. and therefore only the proportion of surface elements will be considered. It is shown in Tabl
53、e 4 that the concentrate samples containing 52% chalcocite and 17% enargite at pH 5.0, and 50% chalcocite and 25% enarg</p><p> These XPS results showing that more copper and, more importantly, less arsenic
54、 are found in the concentrate than in the tail samples are in a good agreement with the flotation results. Furthermore, the XPS results have revealed that the higher flotation Fig. 5. Flotation recoveries 8 min. of cha
55、lcocite and tennantite in a mixed mineral system at pH s11.0 with H2O2 as a function of EDTA concentration mineral s5 g dm ; H2 O2 conditioning time s60 min; wH2O2 x s0.013% wrv; wDEDTPx s2 =10y5 mol dm</p><p&
56、gt;<b> Table 4 </b></p><p> Concentration at.%. of the elements measured by XPS on the surface of flotation concentrate and tail fractions of a chalcocite–enargite mineral mixture mineral s5g
57、 dm; pH s11.0; H2O2 conditioning </p><p> recoveries of the non-arsenic copper minerals resulted from more collector adsorption and less oxiderhydroxide species on the surface of these minerals than on
58、that of enargite or tennantite. It is likely that the surface oxidation layer inhibited collector adsorption on the enargite and tennantite surfaces. </p><p> 4. Conclusion </p><p> This stud
59、y has shown that a separation of the copper sulfide minerals of chalcocite, covellite or chalcopyrite from enargite or tennantite by flotation is difficult in normal oxidation conditions. A overall better separation of
60、these minerals has been obtained at pH 5.0 after selective oxidation with HO, or at pH 11.0 after oxidation with H followed by EDTA addition to selectively remove surface oxidation products. XPS results have shown
61、 that the better mineral separation obtained in thi</p><p> Acknowledgements </p><p> The financial support for this work from Rio Tinto and the Australian Research Council, throug
62、h the Special Research Centres Scheme, is gratefully acknowledged. </p><p> References </p><p> Brookins, D.G., 1988. Eh–pH Diagrams for Geochemistry. Springer-Verlag, Berlin, pp. 29–61. Byrne
63、, M., Grano, S., Ralston, J., Franco, A., 1995. Process development for the separation of tetrahedrite </p><p> from chalcopyrite in the neves-corvo ore of Somincor S.A., Portugal. Miner. Eng
64、. 8 12 , 1571–1581. Chander, S., 1985. Oxidationrreduction effects in depression of sulfide minerals — a review. Min. Metall. </p><p> Process. 2, 26–35. </p><p> Cl
65、arke, P., Fornasiero, D., Ralston, J., Smart, R.St.C., 1995a. A study of the removal of oxidation products </p><p> from sulfide mineral surfaces. Miner. Eng. 8, 1347–1357. </p><p&g
66、t; Clarke, P., Arora, P., Fornasiero, D., Ralston, J., Smart, R.St.C., 1995b. Separation of chalcopyrite or galena </p><p> from sphalerite: a flotation and X-ray photoelectron spectroscopic study. In:
67、Mehrotra, S.P., Shekhar, R. </p><p> Eds. , Mineral Processing: Recent Advances and Future Trends. Allied Publishers, New Delhi, pp. 369–378. </p><p> Cordova, R., Gom
68、es, H., Real, S.G., Schrebler, R., Vilche, J.R., 1997. An electrochemical study of enargite in </p><p> aqueous solutions by transient techniques. J. Electrochem. Soc. 144, 2628–2636. </p><p>
69、 Crozier, R.D., 1992. Flotation, Theory, Reagents and Ore Testing. Pergamon, Oxford, 1992. </p><p> Dutr’e, V., Vandecasteele, C., 1995. Solidificationrstabilisation of hazardous arsenic containing waste fr
70、om a copper refining process. J. Hazard. Mater. 40, 55–68. </p><p> Fullston, D., Fornasiero, D., Ralston, J., 1999a. Oxidation of synthetic and natural samples of enargite and tennantite: II
71、. X-ray photoelectron spectroscopic study. Langmuir 15, 4530–4536. Fullston, D., Fornasiero, D., Ralston, J., 1999b. Zeta potential study of the oxidation of copper sulfide </p><p> minera
72、ls. Colloids Surf., A 146, 113–121. Guongming, L., Hongen, Z., 1989. The Chemical principles of flotation, activation and depression of </p><p> arsenopyrite. In: Dobby, G.S., Rao,
73、 S.R. Eds. , Processing of Complex Ores. Pergamon, Elmsford, NY, </p><p> pp. 61–70. Hamilton, I.C., Woods, R., 1984. A voltammetric study of the surface oxidation of sulphide minerals
74、. In: </p><p> Richardson, P.R., Srinivasan, S.S., Woods, R. Eds. , Proc. Int. Symp. Electrochem. Min. Metal Process. </p><p> Electrochem. Soc., Pennington, NJ, pp. 259–285, 84-10. K
75、ydros, K.A., Matis, K.A., Papadoyannis, I.N., Mavros, P., 1993. Selective separation of arsenopyrite from an </p><p> auriferous pyrite concentrate by sulphonate flotation. Int. J. Miner. Process. 38, 141–1
76、51. Majima, H., 1969. How oxidation affects selective flotation of complex sulphide ores. Can. Metall.Q. 78, </p><p> 269–273. Marasinghe, B., Koleini, S.M., 1994. Separation of arsenic from m
77、ining and metallurgical wastes. Australasian </p><p> Institute of Mining and Metallurgy Student Conference, Brisbane, Queensland, 28–29 April, pp. 93–98. Mielczarski, J.A., Cases, J.M., Al
78、not, M., Ehrhardt, J.J., 1996a. XPS characterization of chalcopyrite, </p><p> tetrahedrite, and tennantite surface products after different conditioning: 1. Aqueous solution at pH
79、 10. </p><p> Langmuir 10, 2519–2530. Mielczarski, J.A., Mielczarski, E., Cases, J.M., 1996b. XPS interaction of amyl xanthate with chalcopyrite, </p><p> tetrahedrite, and ten
80、nantite at controlled potentials. Simulation and spectroelectrochemical results for </p><p> two-component adsorption. Langmuir 12, 6521–6529. Morizot, G., Ollivier, P., 1993. A process
81、 for the economical beneficiation of As- and As–Au-Bearing </p><p> antimony ores. Has the dream become reality? Miner. Eng. 6, 841–856. Padilla, R., Fan, Y., Sanchez, M., Wilkomirsky, I.
82、, 1998. Processing high arsenic copper concentrates. In: </p><p> Sanchez, M.A., Vergara, F., Castro, S.H. Eds. , Environment, Innovation in Mining and Mineral </p>&l
83、t;p> Technology vol. 2. University of Conception, Chile, pp. 603–612. Partridge, A.C., Smith, G.W., 1971. Small-sample flotation testing: a new cell. Trans. Inst. Min. Metall., Sect. </p><p> C 80, 199–
84、200. Richardson, P.E., Walker, G.W., 1985. The flotation of chalcocite, bornite, chalcopyrite and pyrite in a </p><p> electrochemical cell. XV International Mineral Processing Congress,
85、 Edition Gedim, St-Etienne vol. 2, pp. </p><p> 198–210. Tolley, W., Kotlyar, D., Van Wagoner, R., 1996. Fundamental electrochemical studies of sulphide mineral </p><p> flotation
86、. Miner. Eng. 9, 603–637. Wang, X.H., Jiang, C.L, Xuan, D., Forssberg, E., 1992. An electrochemical study of separation of Cu II - </p><p> activated pyrite and arsenopyrite. In: Woods, R., R
87、ichardson, P.E. Eds. , Electrochemistry in Mineral and </p><p> Metal Processing III, pp. 235–258, 92-17. Wilson, P.C., Chanroux, C., 1993. Revenue, calculation and marketing; copper. In: No
88、akes, M., Lanz, T. </p><p> Eds. , Cost Estimation Handbook for the Australian Mining Industry. The Australian Institute of Mining </p><p> and Metallurgy, Parkville, pp. 325–368. </p>
89、;<p> 用選擇性氧化或溶解分離非金屬礦物和硫化砷銅礦</p><p> 南澳大利亞莫森湖校區(qū)伊恩沃克研究所,研究中心的ARC特別粒子與材料界面,澳大利亞力拓科技,邦多拉,維克。2000年3月10日收到, 2000年7月19日發(fā)表。</p><p> 通過浮選分離銅的硫化礦及輝銅礦,是研究選擇性氧化礦物,黃銅礦的砷銅混合礦及硫化物礦物的一種手段。結(jié)果發(fā)現(xiàn),這些礦物在分
90、離后,當(dāng)pH值在弱酸性條件時(shí),它們可以選擇性氧化礦物表面,或經(jīng)過氧化或者在同一個(gè)基本條件下,pH值絡(luò)合劑選擇性溶解表面氧化產(chǎn)物是可行的。Elsevier Science B.V.保留所有權(quán)利。關(guān)鍵詞:選擇性浮選;銅硫化礦,氧化,X射線光電子能譜</p><p><b> 1.導(dǎo)言</b></p><p> 砷是一種不可提取的元素,礦物質(zhì)中含有砷導(dǎo)致如帕迪拉等冶煉
91、產(chǎn)生嚴(yán)重的毒性和環(huán)境問題,1998年; Dutr’e和Vandecasteele,1995年。雖然濕法或火法可用于消除此元素,但是增加了環(huán)境立法的困難性,同時(shí)也導(dǎo)致了砷在處理冶煉問題的的允許量逐步減少。因此,高罰款也造成了銅冶煉廠處理礦石含砷質(zhì)量分?jǐn)?shù)高于0.2。Wilson和Chanroux,1993。 浮選在較早階段有利于消除含有砷的礦物,這將是更加經(jīng)濟(jì)和環(huán)保的方法。但他們的分離非常困難
92、,因?yàn)樗麄円话愣加妙愃频母∵x來選出與它們相關(guān)的寶貴礦物。這是在分離情況下毒砂(FeAsS)由黃鐵礦中分離出來,同時(shí),黃鐵礦也被藥劑帶走了。除了毒砂以外,微量的砷礦物分離較為稀少。潛在的分離方法之一,是依靠由于他們的電化學(xué)性能的不同,以及不同硫化礦的選擇性氧化。1996年的伯恩等人。,1995的Kydros等,1993年的王等人,1994年的貝蒂和波林,1988年的 Guongming和洪恩,1989的錢德,1985的Oxidation等
93、化學(xué)家,利用如黃藥吸附,以緩慢的方法來氧化,通過氧化來防止在高層次上的吸附最終為他們創(chuàng)造氧化礦物產(chǎn)品擴(kuò)散</p><p> 記錄吸附時(shí)間,然后將礦漿轉(zhuǎn)移到浮選柱。氮?dú)庖氲礁∵x柱在流速為五十立方厘米。集中收集后在一,二,四和第8分鐘,過濾浮選時(shí)間通過預(yù)先權(quán)衡過濾器來確定。銅和砷的數(shù)量通過測定電感耦合等離子體(ICP)來分析砷的比例,然后用銅來計(jì)算銅和銅砷礦物實(shí)驗(yàn)百分比。 X
94、射線光電子能譜測量,獲得了珀金埃爾默物理電子部(PHI)的認(rèn)可。 5100光譜儀或者M(jìn)GK一照射X射線源在300 W的功率以及17.9電子伏特的能量傳遞操作適用于所有元素的光譜區(qū)域。在賓夕法尼亞州的分析儀室壓力為10-7規(guī)模能源使用費(fèi)米校準(zhǔn)邊緣和準(zhǔn)線(84.0%的Ev比例),而阻滯電壓隨著銅位置校準(zhǔn)(23 / 2)的不同(是=932.67電子伏特)和銅(33 / 2)的不同(是=75.13電子伏特)。一個(gè)加速的氬離子束在3千伏電壓適,采
95、用對(duì)礦物表面進(jìn)行5分鐘的蝕刻。為XPS分析中,礦物質(zhì)是以一個(gè)類似的方法進(jìn)行編制,在浮選試驗(yàn)后進(jìn)行傾析,礦物泥漿用經(jīng)過預(yù)處理的水洗一次是,以消除任何懸浮膠體粒子,被引入到前頭的光譜儀室立即放入不銹鋼容器作為泥漿樣品。渦輪分子泵是一個(gè)超約10-9大氣壓的高真空的主室,是用來疏散樣品的設(shè)備。該程序用于分析</p><p> 圖 1空界:浮選回收率,輝銅礦,納吉特,空方:科夫特-納吉特,空三角形:黃銅礦-納吉特,填補(bǔ):
96、輝銅礦,黝,填充正方形:科夫特和填補(bǔ)三角形:黃銅礦,黝混合礦物體系坐在一,二,在pH =5.0。沒有20分鐘氮?dú)庹{(diào)節(jié)和0.013%雙氧水(60分鐘氧氣調(diào)節(jié))。 ([礦產(chǎn)] =五克馬克; [DEDTP] = 2х10- 5摩爾馬克) 3.2 在過氧化氫的存在礦物浮選 此外,該銅和砷氧化表面物種高度時(shí)發(fā)生的礦物質(zhì)是調(diào)節(jié)氧氣和過氧化氫。作為一個(gè)例子,表2和表3顯示了氧化條件為在表面氧化砷
97、黝趨勢改為由氮氧和過氧化氫。這些表面分析結(jié)果與對(duì)礦物浮選的所有協(xié)議得到遵守抑郁癥中的過氧化氫存在于pH值11.0,最大回收率低于20%(未顯示的結(jié)果)。 圖1顯示,空調(diào)與過氧化氫在pH 5.0普遍產(chǎn)生了比砷礦物的非砷礦物浮選回收率較高的礦物質(zhì),因此一個(gè)良好的選礦。這是特別為礦物含納吉特系統(tǒng)的情況?;厥章蔬_(dá)到了非砷礦物不等 表2 比例,銅和氧化砷對(duì)黝表面X射線光電子能譜測量產(chǎn)品pH值5
98、.0作為一種調(diào)節(jié)治療【02】= 0.013氫氣%的功能。 </p><p> 圖2至于(三維)的XPS譜黝60和過氧化氫與氧氣分條件。這些點(diǎn)代表實(shí)驗(yàn)譜和全行代表通過總結(jié)計(jì)算譜。從47%至82%,從40%至53%的砷礦物。在無花果XPS結(jié)果。表2和表3表明在銅氧化物的比例</p><p> 圖3銅(2p3 / 2)的XPS黝譜60分鐘氧氣和過氧化氫的條件。這些點(diǎn)代表實(shí)驗(yàn)譜和全行代表
99、通過總結(jié)計(jì)算譜。表3比例,銅和氧化砷對(duì)黝表面X射線光電子能譜測量產(chǎn)品pH值11.0作為一種調(diào)節(jié)治療([過氧化氫] = 0.013%功能)。</p><p> 礦物表面的pH值在5.0,在pH低于11.0,因此非高砷銅礦礦物浮選取得了比在pH 5.0,在pH 11.0回收率。增加的選礦觀察到pH值低于5.0,在pH 11.0也是一個(gè)表面氧化砷物種所占比例增加,在pH值5.0無花果的結(jié)果。表2和表3。這最后的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 非金屬礦物處理染料廢水研究.pdf
- 造紙用非金屬礦物與植物復(fù)合纖維制備與性能研究.pdf
- 四種非金屬礦物對(duì)污水中硫化物吸附條件及性能的研究.pdf
- 安徽銅陵金屬非金屬礦山
- 安徽銅陵金屬非金屬礦山
- 金屬非金屬礦山試題講解
- 金屬非金屬礦山安全規(guī)程
- 金屬非金屬礦山用電標(biāo)準(zhǔn)
- 非金屬礦物吸附檸檬酸殘液效果及其吸附產(chǎn)品飼用價(jià)值研究.pdf
- 常見非金屬礦用途
- 改性非金屬礦物對(duì)霉菌毒素吸附效果的初步研究.pdf
- 金屬與非金屬礦山企業(yè)
- 金屬非金屬礦山建設(shè)項(xiàng)目
- 金屬非金屬礦山員工安全手冊(cè)
- 1、金屬非金屬礦山安全規(guī)程
- 關(guān)于召開全省金屬非金屬礦山
- 微生物在硫化物礦物表面的選擇性吸附.pdf
- 錫石多金屬硫化礦選擇性磨礦行為研究.pdf
- 2067.某金礦中非金屬礦物資源的綜合利用
- 新秀杯.金屬礦物的開發(fā)和利用
評(píng)論
0/150
提交評(píng)論