版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 附錄1 英文文章翻譯(原文)</p><p> State of the art of buckling-restrained braces in Asia</p><p><b> Qiang Xie</b></p><p> Department of Structural Engineering, Tongji
2、 University, Shanghai 200092, China</p><p> Received 3 September 2004; accepted 19 November 2004</p><p> Abstract:This paper presents a summary of buckling-restrained braces (BRBs). BRBs show
3、the same loaddeformation behavior in both compression and tension and higher energy absorption capacity with easy adjustability of both stiffness and strength. Research and developments of various types of BRBswith diffe
4、rent configurations in Asia, especially in Japan, are introduced. Analyses and experiments are illustrated to show the conditions necessary for restraining steel braces from buckling. Some key </p><p> Keyw
5、ords: Steel frame; Buckling; Buckling-restrained braces; Cyclic loading test; Damper; Hysteretic behavior</p><p> 1. Introduction</p><p> Lateral displacements on structural buildings have bee
6、n of great concern for engineers.In order to minimize the effect of earthquake and wind forces braces have been used successfully. However, when the braces are subjected to large compressive forces they exhibit buckling
7、deformation and show unsymmetrical hysteretic behavior in tension and compression, and typically exhibit substantial strength deterioration when loaded monotonically in compression or cyclically, as shown in Fig. 1(a). I
8、f buc</p><p> 2. Development of BRBs</p><p> 2.1. History of BRBs</p><p> Research on BRBs was first carried out by Yoshino et al. [1]. They tested cyclically</p><p&g
9、t; two specimens that they called “Shear wall with braces”, consisting of a flat steel plate encased by reinforced concrete panels with some debonding materials between them. One has a clearance of 15 mm between the pan
10、el lateral sides and the surrounding panel whilst the other was not provided with such spacing. The former exhibits higher deformation and energy dissipation capacity than the latter.</p><p> Wakabayashi et
11、 al. conducted pioneering thorough research on BRBs [2,3]. They developed a system in which braces made of steel flat plates were encased by reinforced concrete panels with an unbonded layer between them. They found that
12、 the process of achieving debonding on the brace’s surface was very important to make the brace–panel system to satisfy the condition that only the brace resists horizontal loading while the concrete panel serves only to
13、 prevent the brace from buckling. A multi-step</p><p> For the debonding effect test, epoxy resin, silicon resin, vinyl tapes, etc. were tested, and eleven specimens with different debonding materials were
14、examined using pull-out tests. The debonding method of coating a silicon resin layer on top of an epoxy resin was utilized in the following tests.</p><p> Various reinforcing details around the plate and de
15、tails between the exposed and embedded parts (styrol foam, gaps) were chosen as the test variables. Twenty-one specimens with many combinations of the variables were tested for monotonic compressive loading. The results
16、showed that in order not to restrain the deformation of the stiffened ends in the precast panel, it is necessary to put small styrol foam into the gap.</p><p> To verify the hysteretic behavior, fourteen 1/
17、5-scale specimens of X-shape and diagonal-shape braces encased by PC panels were tested under cyclic loading. Test setup and hysteretic behavior of one of the specimens are shown in Fig. 3. The test results showed that t
18、he load carrying capacity of the unbonded braces was larger than that of the bonded braces. Maximum lateral drift angle was about 0.03 rad, almost four times that of the bonded brace. Uniform strain distributions measure
19、d along the ax</p><p> In order to check the behavior of the BRB in real steel frames, two 1/2-scale tests (two spans) were performed for final demonstration. Fig. 4 shows the X-shape braced frame model and
20、 its hysteretic behavior. Before local buckling occurred in the steel plate at a drift angle of about 0.025 rad, behavior of the frame was stable, showing spindle shape hysteretic loops and good energy absorption capacit
21、y. The first test on steel braces encased in mortar-infilled steel tubes was conducted by Kimura</p><p> Mochizuki et al. [6–8] studied the composite BRBs consisting of unbonded braces encased in reinforce
22、d concrete square cross-section members. In their study, a coefficient factor that represents the stiffness degradation of concrete panel after it cracks was used. Fujimoto et al. [9,10] extended the research by Kimura a
23、nd Takeda, the steel core braces were coated with debonding material and restrained by mortar-infilled square steel tubes. Nagao et al. [11–15] did some tests and theoretical analy</p><p> 2.2. BRB configur
24、ations</p><p> As shown in Fig. 5, BRBs can be divided primarily into two wide categories covering different configurations: one typical BRB consists of a steel brace encased by a reinforced concrete member
25、 or steel member such as tubes, the other type is a steel plate brace encased by precast concrete panels. Fig. 6 shows two photos of these two types of BRBs.</p><p> Cross-sections of typical BRBs are shown
26、 in Fig. 7. Fig. 7(a) shows steel plate or crisscross cross-section plate braces stiffened by mortar-infilled steel tubes [9,10,16–18]. Fig. 7(b) exhibits H-section steel braces enclosed by reinforced concrete [11–15]. F
27、ig. 7(c) exhibits crisscross cross-section steel brace enclosed by steel-fiber reinforced concrete [19]. Fig. 7(d) shows a type of steel plate brace stiffened by two bolt-connected precast concrete panels [20]. The model
28、 by Suzuki et al. [2</p><p> 3. Some key issues and analysis of BRBs</p><p> As mentioned before, separation unit between core braces and buckling-restraining units, which ensures the brace ca
29、n slide freely inside the buckling-restraining unit and that transverse expansion of the brace can take place when the brace yields in compression, is of great importance. This typically requires some debonding material
30、to be employed as the separation unit. Otherwise, a gap should be kept between the two units</p><p> 4. Overall buckling criterion of BRB</p><p> However, in order to obtain the same yield and
31、 plastic deformation at both tension and compression of restrained brace, the problem is how to set up stiffness and strength criteria for encasing member. If the stiffness of encasing member is high and the strength is
32、low, the stiffening effect will disappear once the encasing member is damaged. Inversely, if the strength of it is high while the stiffness is low, it cannot restrain the buckling deformation of the braces. Thus, the sti
33、ffness and str</p><p> 5. Applications of BRBs</p><p> Initial research on BRB by Wakabayashi et al. was originally for a real building. This research was suspended and thereafter, many other
34、researchers focused on BRB and its practical applications. BRBs encased by reinforced concrete panels were employed in many hotels in Japan, such as the 26-story Raguza Tower Osaka. One of the most widely used BRBs is th
35、e type shown in Fig. 7(a), which is employed not only in Japan, on projects such as the Project of Harumi 1 Chome and the Passage Garden in Shi</p><p> 6. Conclusions and prospects</p><p> Thi
36、s paper presents a summary of buckling restrained braces (BRBs). It introduces the research and development of various types of BRB with different configurations and BRB frames. Theories and experiments for the condition
37、s to prevent steel brace from buckling are also illustrated. BRB shows the same load-deformation behavior in both compression and tension and higher energy absorption capacity with good adjustability of stiffness and str
38、ength. Design of encasing member of BRBs should consider </p><p> Acknowledgements </p><p> The author would like to show his great thanks to Prof.Masayoshi Nakashima, Disaster Prevention Rese
39、arch Institute of Kyoto University, Japan, and Japan Society for the Promotion of Science (JSPS) for their supporting the author’s study in Japan. Prof. Robert Tremblay of Ecole Polytechnique of Montreal, Canada, should
40、also be greatly appreciated for his precious advice on this subject during his stay in Japan as a JSPS visiting scientist.</p><p> Also, thanks should be given to Prof. Keh-Chyuan Tsai of National Taiwan Un
41、iversity for his generous provision of research reports from NCRRE.</p><p> 附錄2 英文文章翻譯(譯文)</p><p> 防屈曲支撐在亞洲的地位</p><p><b> 謝強</b></p><p> 結構工程專業(yè),同濟大學,上海2
42、00092.中國</p><p> 2004年9月收稿,2004年11月發(fā)表</p><p> 摘要:本文簡要的介紹了防屈曲支撐,防屈曲支撐在拉伸、壓縮作用下顯示了相同的變形能力,而且能通過簡單的調整強度和剛度來更好的吸收能量。本文介紹了亞洲特別是日本的各種類型防屈曲支撐的研究和發(fā)展。分析和研究表明,要給鋼支撐提供別要的約束防止其屈曲。防屈曲支撐的必要條件,比如核心支撐與外包單元之間的
43、間隙,防屈曲支撐連接部分的收縮,約束面板與周邊框架之間的必要的間隙。還介紹了防屈曲支撐阻止支撐失穩(wěn)的機制。給出了核心支撐在有初始撓度下防止核心支撐屈曲的強度和剛度要求。新建的高層鋼結構建筑和現(xiàn)有建筑的抗震加固的應用表明,使用防屈曲支撐具有良好的前景。© 2004愛思唯爾公司保留所有權利。</p><p> 關鍵詞:鋼框架;屈曲;屈曲約束支撐;循環(huán)載荷試驗;阻尼器;遲滯行為</p><
44、;p><b> 簡介</b></p><p> 在建筑結構橫向位移一直被工程師高度關注著。為了最大限度地減少地震和風力的支撐已經(jīng)被成功地使用。然而,當支撐受到壓力過大時,他們表現(xiàn)出扭轉變形并且在拉伸和壓縮下出現(xiàn)不對稱遲滯行為,當施加單調循環(huán)荷載時通常表現(xiàn)出相當?shù)膹姸葠夯鐖D1(a)所示。如果要阻止鋼支撐的屈曲,保證支撐在拉伸和壓縮下具有相同的強度,支撐吸收的能量將顯著增加,遲滯行
45、為減弱。這些要求激勵研究人員和工程師開發(fā)出的新型支架,防屈曲支撐(BRB)。</p><p> 防屈曲支撐的概念很簡單:防止支撐屈曲的支撐,因此支撐無論是在拉伸和壓縮表現(xiàn)出相同的行為,如圖1(b)所示。在過去的幾十年中,屈曲約束支撐框架已成為越來越受歡迎,特別是在日本,因為他們良好的抗震性能。如圖2所示,防屈曲支撐通常包括以下四個部分:1,軸向力承載單位(支撐);2,連接支撐和連接部分加筋過渡段(支座);3,屈
46、曲約束單元(外包單元),其功能是防止屈曲的支撐;4,支撐和屈曲約束單元的分離單元,保證了支撐在屈曲約束單元里可以滑動,在壓縮時支撐單位可以自由地發(fā)生橫向擴展。這通常需要一些剝離材料作為分離單元。否則,差距應該保持在兩個單位。本文介紹了亞洲的不同類型的防屈曲支撐的研究和發(fā)展,特別是在日本的過去幾十年。文中闡述了防止鋼支撐屈曲的理論與試驗。對防屈曲支撐的配置和外包單元對剛度和強度要求的一些關鍵問題也有所說明。新建的高層鋼結構建筑和現(xiàn)有建筑的
47、抗震加固的應用表明,使用防屈曲支撐具有良好的前景。</p><p><b> 防屈曲支撐的發(fā)展</b></p><p><b> 防屈曲支撐的歷史</b></p><p> 吉野等首次進行了防屈曲支撐的研究,他們測試了循環(huán)荷載下防屈曲支撐的性能。</p><p> 兩個試件,它們被稱為“帶支
48、撐的剪力墻”,由一個由鋼筋混凝土面板與他們之間的一些剝離材料包裹的鋼板支撐組成的。一種橫向面板兩側與周圍的面板有15mm的距離,而其他的則沒有間隙。前者具有較高的變形比后者和耗能能力。</p><p> 若林等對防屈曲支撐進行深入的開拓性研究 [2,3]。他們開發(fā)出一種系統(tǒng),其中由平板鋼制成支撐通過與他們之間無粘結層鋼筋混凝土板包裹。他們發(fā)現(xiàn),實現(xiàn)對支撐的表面剝離過程非常重要,只有使支撐板系統(tǒng)滿足這個條件,支撐
49、抵抗水平荷載時混凝土面板才會防止支撐失穩(wěn)。由此進行了一個多步驟的試驗計劃,首先(1)剝離材料,以研究無粘結的效果;(2)支撐測試,以檢查在邊界和周圍的鋼筋混凝土板對鋼支撐的加強效果(3)測試鋼筋混凝土班對小范圍支撐的加強程度(4)對采用建議的支撐系統(tǒng)的兩層框架大規(guī)模的試驗。</p><p> 為了測試剝離效果,對環(huán)氧樹脂,硅樹脂,乙烯基等進行了測試,對十一種不同的剝離材料樣品進行了拉出測試。該涂層的硅樹脂的環(huán)氧
50、樹脂層頂部剝離方法是使用下面的測試。</p><p> 將加強板塊之間的接觸和預埋件(苯乙烯泡沫塑料,差距)的詳細細節(jié)選為測試變量。檢測二十一試件在單調壓縮載荷下的各種變量組合。結果表明,為了不使預制板硬化,要將少量的苯乙烯泡沫塑料放入間隙中。</p><p> 為了驗證遲滯行為,對十四的X形和由鋼筋混凝土板包裹X形支撐構件在循環(huán)荷載下進行了測試。構件的測試設置和遲滯行為見圖3。測試結
51、果表明,無粘結支撐的承載能力比普通支撐大。最大側向位移角為0.03弧度,幾乎是普通支撐的四倍。無粘結支撐沿支撐軸的應變分布均勻,這表明了無粘結支撐的效果。</p><p> 為了檢驗防屈曲支撐在實際鋼框架的行為,進行了兩個1/2范圍的測試進行最終論證。圖4顯示了X形支撐框架模型及其滯后的行為。在局部屈曲之前鋼板支撐的側移角約0.025弧度,框架比較穩(wěn)定,呈現(xiàn)出紡錘形遲滯循環(huán)和良好的能量吸收能力。由木村等人進行的
52、第一次測試鋼支撐包裹的是砂漿充填鋼管。[4]。雖然剝落材料或砂漿和核心支撐之間沒有差距,泥漿充填管對支撐的核心的屈曲一定的約束作用。外管上的測量約是內部鋼板的10-15%,而支撐在受壓時通常表現(xiàn)出比抗拉更高的承載力。在他們隨后的研究[5],四個全面構件,其中兩個有支撐與周圍之間灌一些砂漿,進行了測試循環(huán)。從測試的結果他們得出結論,如果限制外管的歐拉臨界力與支撐屈服強度的比值大于1.9,核心支撐將不會發(fā)生屈曲,這些構件將顯示出良好的遲滯行
53、為。</p><p> 望月等[6-8]研究了無粘結支撐組成的復合防屈曲支撐外面包裹的鋼筋混凝土方形截面的單元。在他們的研究中,表示裂縫后的混凝土面板剛度退化是穩(wěn)定系數(shù)的起主要作用。藤本等[9,10]延長木村和武田研究了鋼芯支撐被涂剝離材料和砂漿,充填方鋼管約束。長尾等[11-15]做了一些測試和進行了方鋼管(支撐)或H型鋼的鋼筋混凝土構件組成的復合防屈曲支撐覆蓋核心的理論分析。</p><
54、p> 2.2。防屈曲支撐的配置</p><p> 如圖5所示,防屈曲支撐可以有不同的配置,主要為兩大類:一類典型的防屈曲支撐,由鋼筋混凝土管等包裹鋼構件組成,另一種是由鋼板支撐預制混凝土板包裹。圖6給出了這兩種類型的防屈曲支撐的照片。</p><p> 典型BRBs截面見圖7。圖7(a)表示的是泥漿充填鋼管[9,10,16-18]包裹的鋼板或縱橫交錯截面支撐。圖7(b)給出由鋼
55、筋混凝土包裹的H型鋼組成的支撐[11-15]。圖7(c)給出了由鋼纖維鋼筋混凝土包裹的縱橫交錯截面鋼支撐的[19]。圖7(d)所示的由兩個螺栓連接的預制混凝土板[20]鋼板支撐。圖7(e)所示的是由鈴木等人的模型[21,22]的寬翼緣側向屈曲約束對由外部鋼和的管段組成。圖7(f)的防屈曲支撐的截面是由兩個圓形鋼管組成。在此配置中,內管是提供對橫向變形的約束,同時外管是一個[23,24]可以抵抗軸向力的構件。圖7(g)是一個平臺鋼板方鋼管
56、約束,經(jīng)測試也為防屈曲支撐[25-27]。清水等[28]提出了不銹鋼方管作為約束內部包裹一個十字形鋼部分構件,如圖所示7(h)。宇佐美等[29,30]提出了H形支架由如圖7(i)所示方鋼管約束。圖7(J)顯示了鋼板螺栓將板[31]約束起來。圖7(k)顯示雙T字形支撐由[32,33]方管包裹。為了獲得易于連接配置,蔡等人提出了雙T字形雙管防屈曲支撐[34-37]。除了上述的各種配置防屈曲支撐其他研究人員也開發(fā)了和提出了各種各樣的防屈<
57、;/p><p> 防屈曲支撐分析的一些要點</p><p> 如前所述,核心支撐和約束單元之間的間隙保證了支撐在收到壓縮可以在約束單元內自由的進行橫向擴展,這是是非常重要的。這通常需要一些剝離材料作為分離單位來保證。否則,這個間隙應該保持在兩個單元</p><p> 防屈曲支撐的整體失穩(wěn)判據(jù)</p><p> 然而,為了獲得同樣的利用率,
58、支撐在拉伸和壓縮是都應該發(fā)展到塑性,問題是如何設置約束單元的剛度和強度。如果約束單元的剛度高,強度低,一旦約束單元損壞,防屈曲的效果就會消失,反之,如果它的強度高而剛性低,也不能抑制支撐的屈曲變形。因此,約束單元的應該同時考慮。</p><p> 5.防屈曲支撐的應用</p><p> 由若林等組織的初步研究防屈曲支撐委員會最開始想要將防屈曲支撐應用到真正的建筑中。雖然這項研究當時被暫
59、停,但此后,許多其他研究人員將防屈曲支撐的實際應用作為了研究重點。在日本由鋼筋混凝土面板包裹的防屈曲支撐包裹應用到了很多酒店,比如圖7(a)中所示的,26層大阪Raguza塔是其中最廣泛使用防屈曲支撐的結構之一,如在晴海1丁目項目和在東京澀谷通道花園項目,這種情況不僅在日本,在美國和臺灣也經(jīng)常有著種情況。通過安裝了無粘結支撐可以提高建筑物的抗震性能,整個臺北縣行政大樓(TCAB)應用了一些新的設計和改造項目,在臺灣選擇了雙T型雙管防屈曲
60、這次很難過提高建筑物的抗震性能[37]。故意使用低屈服強度的防屈曲支撐,以提高能源消耗,大多數(shù)情況下低價格的鋼材會應用到防屈曲支撐中。 </p><p><b> 6.結論與前景</b></p><p> 本文提出了一種防屈曲支撐(BRBs)。文中介紹了不同類型的防屈曲支撐的研究,不同的配置和采用防屈曲支撐框架的發(fā)展。還說明了防屈曲鋼支撐的理論和實驗。防屈曲支撐顯
61、示了相同的負載下拉伸和壓縮上相同的力學行為、高強度與剛度、良好的吸收能力和良好的變形調節(jié)能力。防屈曲支撐的約束單元的設計時應對剛度和強度同時進行考慮。由于其良好的抗震性能,施工的可行性,且易于更換,防屈曲支撐已經(jīng)流行于亞洲高層鋼結構建筑,特別是在日本,在過去的幾年。新建的高層鋼結構建筑和現(xiàn)有建筑的抗震改造應用表明了防屈曲支撐良好的前景。</p><p><b> 致謝</b></p&
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 防屈曲耗能支撐在橋梁上的減震性能研究.pdf
- 防屈曲支撐在選煤主廠房中的減震控制.pdf
- 防屈曲鋼支撐在鋼框架中的減震效果分析
- 防屈曲耗能支撐在加固工程中的應用及優(yōu)化.pdf
- 防屈曲耗能支撐在實際工程中的應用及分析.pdf
- 防屈曲耗能支撐在輕鋼加層結構中的應用.pdf
- 防屈曲支撐在不規(guī)則結構中的減震控制研究.pdf
- 防屈曲支撐在大跨連體結構中的應用研究.pdf
- 防屈曲支撐在偏心支撐鋼框架結構中的抗震性能研究.pdf
- 防屈曲耗能支撐在某鋼框架加層加固中的應用.pdf
- 防屈曲耗能支撐在L形框架結構中的布置研究.pdf
- 防屈曲耗能支撐在雙塔連體結構中的應用研究.pdf
- 防屈曲支撐在豎向剛度突變結構加固中的應用研究.pdf
- 柱間防屈曲支撐在網(wǎng)殼結構減震中的應用研究.pdf
- 防屈曲支撐在有局部收進高層鋼結構中的減震性能分析.pdf
- 防屈曲支撐在框架結構整體加固中的性能研究和應用.pdf
- 防屈曲支撐 論文
- 新型抑制屈曲支撐在結構失穩(wěn)監(jiān)測中的應用
- 防屈曲支撐在豎向不規(guī)則鋼結構中的抗震性能優(yōu)化研究.pdf
- 約束屈曲支撐在多層鋼框架中的應用研究.pdf
評論
0/150
提交評論