光電信息工程外文翻譯_第1頁
已閱讀1頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  南京郵電大學(xué)</b></p><p>  畢業(yè)設(shè)計(論文)外文資料翻譯</p><p>  附件:1.外文資料翻譯譯文;2.外文原文</p><p>  附件1:外文資料翻譯譯文</p><p>  以LiF做為N型摻雜的磷酸三(8 -羥基喹啉)鋁薄膜</p><p>

2、;  作者:考???#183;羅伊·喬杜里,鐘赫尹,佛朗基等</p><p>  由于其易于加工且可以廉價的制作低成本基板,有機半導(dǎo)體已經(jīng)成為制作下一代電子和光電子器件的新型材料。為了實現(xiàn)可替代無機材料,有機電子領(lǐng)域已經(jīng)成為努力研究的熱點,尤其是大面積、柔性電子的應(yīng)用。已經(jīng)證實對實現(xiàn)高效有機發(fā)光二級管(OLED)的平板顯示和照明、薄膜場效應(yīng)管(TFT)、探測器大面積的探測器陣列,及有機光伏電池低成本的太

3、陽能能源的產(chǎn)生有重大的貢獻(xiàn)。在所有這些有機設(shè)備實施方案中,電荷注入/提取及傳輸?shù)膬?yōu)化對他們來說是極為重要的技術(shù)。有效的注射或提取要求低能量勢壘,而有效的傳輸要求高導(dǎo)電的傳輸層。</p><p>  有機半導(dǎo)體的載流子濃度和載流子遷移率都低。由于這些特性,有機器件的開啟電壓一般都高于無機器件。通常有機傳輸層會使用非常薄的壓降結(jié)構(gòu),這必然更容易短路,因此不利于設(shè)備的穩(wěn)定性。此外,由于載流子濃度低,載流子在此類材料中的

4、傳輸是受空間電荷的限制的。類似無機半導(dǎo)體,電摻雜的方法可以提高載流子的傳輸,從而提高裝置性能。具體來說,摻雜的有機半導(dǎo)體已廣泛應(yīng)用于有機發(fā)光二極管而且成為降低設(shè)備工作電壓的一種有效方法。對涂料的摻雜有機半導(dǎo)體材料,如F4-TCNQ作為P型摻雜的受主雜質(zhì),而提供電子的堿金屬通常用于n型摻雜。雖然在OLED器件中已經(jīng)可以通過電摻雜來降低驅(qū)動電壓并增加器件亮度,但是n性摻雜還有問題,特別是堿金屬在有機介基質(zhì)中的高擴散反應(yīng)。在本研究中我們展示了

5、高效率的由三(8 -羥基喹啉)鋁(Alq3的)與無機絕緣氟化鋰(LiF)共蒸發(fā)的n型摻雜。在這個系統(tǒng)中,我們系統(tǒng)地研究了摻雜濃度對電荷傳輸?shù)挠绊?,并顯示最佳摻雜不僅可以提高電流傳輸,也可以提高電子的注入和傳輸而不需要使用低功率函數(shù)的陰極電子注入和傳輸。最后,我們研究了OLED結(jié)構(gòu)中最佳摻雜時電子傳輸層內(nèi)降低工作電壓和提高效率之間的關(guān)系。</p><p>  在第一部分的研究中,制備了單載流子設(shè)備。共同熱蒸發(fā)實現(xiàn)了

6、Alq3的LiF摻雜。這種摻雜與堿性摻雜相比的優(yōu)點是提高了穩(wěn)定性。在有機層和金屬陰極之間插入一層薄薄LiF可以降低OLED的驅(qū)動電壓。在另一份報告顯示,在電子傳輸層中摻雜LiF可以提高設(shè)備的效率和可靠性。此外,光電子發(fā)射測量顯示能量帶在Alq3和LiF接口處彎曲可以提高Alq3和Al接口處的電流注入。這些結(jié)果表明,LiF對于提高電子注入很有效,這也促使我們用LiF作為n型摻雜。典型的薄膜器件結(jié)構(gòu)包括玻璃基板/銦錫氧化物(ITO)/LiF

7、的摻雜的Alq3/Al。LiF/Alq3的摻雜劑比例是從1到15wt%。為了比較這種摻雜方案的傳輸特點,制造了使用非摻雜Alq3層和LiF/Al電極且使用廣泛應(yīng)用于OLED設(shè)備的結(jié)構(gòu)的器件。這兩種器件結(jié)構(gòu)如圖1a所示。</p><p>  用伏安測量的方法對Alq3中LiF的摻雜濃度對器件性能的影響進(jìn)行了研究,如果有影響,則是電子從陰極注入傳輸層形成導(dǎo)電性。測量設(shè)備也在Alq3層上做了摻雜。圖1b顯示了在不同摻雜

8、LiF:Alq3器件中電壓、電流密度 (J–V) 的特性。這些數(shù)據(jù)清楚的表明,普通摻雜與在雙層陰極設(shè)備中摻雜相比具有更高的電流。圖1b中的插圖,描繪了在相同的設(shè)備中數(shù)據(jù)在低電流范圍內(nèi)的浮動。</p><p>  圖2a中用Alq3中LiF的摻雜濃度做雙對數(shù)坐標(biāo)來描繪J-V特征,第一點要注意的是電流密度,所有的工作電壓隨LiF的摻雜濃度水平增加而增加,在4-6wt%時的濃度達(dá)到最高。</p><

9、p>  圖1.a)單載波設(shè)備的結(jié)構(gòu)示意圖:i)摻雜LiF的Aloq3器件;ii)使用雙層LiF/Al復(fù)合陰極的Alq3器件。b)摻雜LiF的Alq3設(shè)備的電流密度與電壓(J-V)的特點。也顯示了使用雙層LiF/Al復(fù)合陰極的Alq3設(shè)備的數(shù)據(jù)。插圖:放大在低電流區(qū)域的相同數(shù)據(jù)顯示了摻雜LiF增加了電流密度。</p><p>  若超過10%,電流密度隨摻雜濃度增加而減少,這可能是由于LiF的聚合。在最高的偏

10、置電壓下,且摻雜濃度為4%的設(shè)備中最大電流密度高于未摻雜器件四個數(shù)量級,比LiF/Al雙層陰極摻雜設(shè)備的價值更高。其他重要的觀察是LiF摻雜對電荷傳輸特性的影響。很顯然在摻雜的Alq3設(shè)備和采用LiF/Al雙層陰極的設(shè)備中,傳輸時主要是陷阱限制了電流(TCL)的傳輸,當(dāng)V>5時主要取決于電流密度。有趣的是,改變傳輸性質(zhì)本質(zhì)上是為了獲得無陷阱無空間限制的電荷(SCLC)體質(zhì),(J-V2)隨LiF的摻雜濃度的增加,表明陷阱內(nèi)充滿了摻雜

11、。即使在無陷阱的SCLC的體質(zhì)中,也可以明顯觀察到對當(dāng)前的摻雜水平的依賴。在電壓低于2伏,電流呈線性偏壓,因此薄膜的散裝系數(shù)(S)可估測。即使在1% 的額定摻雜情況下,Alq3薄膜中溫度傳導(dǎo)率也增加了四個數(shù)量級,摻雜薄膜的數(shù)值從5*10-7scm-1到10-11scm-1。在摻雜濃度為4%時,電導(dǎo)率最大可達(dá)到10-6scm-1。為了估計自由陷阱SCLC區(qū)域內(nèi)的電子遷移率,我們使用自由陷阱SCLC的Mott-Gurney方程:</p

12、><p><b>  (1)</b></p><p>  在ξ是介電常數(shù),m是載流子遷移率,d是樣品厚度。結(jié)果表明(5*104Vcm-1)低場電子在摻雜濃度為4%的樣品中電子的遷移率是1.95*10-5cm2v-1s-1,通過TOF方式測量可知遷移率比摻雜Alq3的遷移率約高兩個數(shù)量級。用TOF測量摻雜Alq3的電子流動性,在不同的領(lǐng)域?qū)鼍哂泻軓娨来嫘?,其流動性從低電?/p>

13、10-7cm2v-1s-1到高電場10-5cm2v-1s-1。我們的研究結(jié)果表明,在摻雜樣品中高低電場內(nèi)的流動性是相同的。表1總結(jié)了電導(dǎo)率、載流子濃度、在摻雜和未摻雜Alq3薄膜中的流動值。在這里,取16作為TOF的流動參考值,并假設(shè)其為未摻雜Alq3薄膜的遷移率。在摻雜樣品中使用非陷阱SCLC模型,若有明顯的高流動性值,表明陷阱被填滿,使得摻雜樣品內(nèi)的載流子遷移率高于未摻雜的樣品內(nèi)載流子遷移率。此外,表1還表示摻雜使得未摻雜樣品中的載

14、流子濃度從4.3*1011cm-3增加到1.3*1015cm-3。</p><p>  表1:電導(dǎo)率、載流子密度、在摻雜和未摻雜樣品中的遷移率。</p><p>  圖2.a)使用Al陰極并摻雜LiF的Alq3單載波設(shè)備中的電流密度—電壓(J—V)的典型特點。虛線對應(yīng)的數(shù)據(jù)顯示了由電壓決定的電流的不同性質(zhì)。b)與在ITO中摻雜LiF器件的電流密度—電壓(J—V)的參數(shù)相似。圖像表明樣品中都

15、包含LiF。</p><p>  圖3.比較摻雜LiF的Alq3器件在最佳摻雜濃度下使用不同電極(Al、ITO、Ag)時獲得的電子注入效率??招姆枌?yīng)于使用雙層陰極的設(shè)備,實心符號代表摻雜的設(shè)備。</p><p>  為了驗證在有機半導(dǎo)體內(nèi)的n型摻雜,可以提高從陰極獲得的電荷注入且可以獲得更有效的工作性能,我們對同一電子器件,不同的金屬電極進(jìn)行了研究測試。圖2b顯示了這樣的設(shè)備從ITO電

16、極的注入電子的電流電壓數(shù)據(jù)。在Alq3中摻雜不同濃度的LiF和采用Al陰極改變設(shè)備中電流的變化情況是非常相似的。在各種以銀作為陰極的器件中也經(jīng)常會摻雜高水平的LiF來增加電流。圖3結(jié)果表明,最佳摻雜和ITO或銀電極的注入電荷比未摻雜Alq3和電極之間只有薄薄的一層LiF的大。這表明,不同金屬陰極的注入電荷要得到加強,則要在在傳輸層要加入LiF。高和卡恩以前的工作表明,重?fù)诫s會導(dǎo)致有機層彎曲,使得金屬和有機界面的空間電荷區(qū)變窄(到2nm)

17、,從而使載流子的注入更為有效。因此,從高功效的電極如ITO和銀電極中可能會獲得有效的電子注入?;谳d波傳輸數(shù)據(jù),以LiF作為n型摻雜明顯提高了Alq3薄膜的電導(dǎo)率。然而,LiF是絕緣體,不能明顯的了解它是如何在Alq3中表現(xiàn)為n型摻雜的?;诠怆娮友芯康男〗M已經(jīng)證明了LiF和Alq3之間存在一些小的化學(xué)反應(yīng),但是LiF分解出Li+摻雜入Alq3這一可能是可以排除的。然而,還有一個問題,</p><p>  3Li

18、F+Al+3Alq3→AlF3+3Li+Alq3- ?Gf≈0</p><p>  因此Alq3中自由基的形成是為了產(chǎn)生n型摻雜的原因。因此,常用LiF作為界面層以方便Alq3從鋁中獲得電子注入。隨后出現(xiàn)的問題是,當(dāng)前鋁是否能夠大批量的存在于Alq3薄膜中。已經(jīng)報道過金屬在蒸發(fā)過程中散成小分子并聚合成薄膜。基于二次離子質(zhì)譜(SIMS)的測量,Gradin等報道稱,銀原子從頂部電極從有機

19、層擴散到ITO陽極的底部。</p><p>  圖4.摻雜LiF的OLED器件的結(jié)構(gòu)原理和設(shè)備性能。a)器件為(i)摻雜LiF的Alq3(ii)使用復(fù)合雙層的LiF/Al陰極的裝置。b)J—V特性。c)亮度—電壓關(guān)系。d)發(fā)光效率顯示了驅(qū)動電流密度。</p><p>  在我們目前的實驗中,鋁和銀都被用來作為頂級的陽極。如果銀可以擴散入有機層,那么鋁擴散需要的蒸發(fā)溫度明顯高于銀所需的,而且

20、鋁在蒸發(fā)擴散過程中更容易形成空隙或針孔。這就是為什么我們在使用鋁作為接觸金屬的單載波設(shè)備時常遇到短路問題。如果鋁原子批量的到達(dá)Alq3層,LiF分子就可能會被“激活”,從而活躍的摻雜在Alq3薄膜中。這種模式與我們UPS數(shù)據(jù)顯示的結(jié)果是一致的,我們觀察到當(dāng)Alq3與LiF共同蒸發(fā)時,Alq3的費米能級只有很小的轉(zhuǎn)變。當(dāng)Alq3中:LiF覆蓋在鋁或銀的亞單層上時,費米能級會產(chǎn)生大的變化(鋁是1.0 eV,銀是0.5 eV),說明LiF作為

21、摻雜存在于鋁和銀中。詳細(xì)的UPS數(shù)據(jù)將刊載在別處。事實上,在樣品中用銀作為頂端界面時產(chǎn)生的摻雜效果和我們的模型是一致的,所以銀也可以激活摻雜在Alq3中的LiF。銀激活效率沒有鋁高,因此,目前設(shè)備通常使用鋁接觸而不是銀接觸。</p><p>  為了增強電荷注入效率和電導(dǎo)率,用在傳輸層摻雜了LiF的Alq3制造異質(zhì)結(jié)有機發(fā)光二極管。氮、NO-雙(-1-奈基)-N,NO-二苯基聯(lián)苯胺(A-NPD)用來作為傳輸?shù)目锥?/p>

22、,而Alq3的另一層作為有機電致發(fā)光的元件。10nm厚的2,9-二甲基-4,7-二苯基-1,10-菲羅啉(BPC)層插在發(fā)光Alq3層和電子傳輸層之間,作為攔截器,用來限制發(fā)光層。典型的設(shè)備框架如圖4a所示??傻迷谡-h(huán)境條件下封裝器件的電流密度-電壓-亮度。假設(shè)設(shè)備發(fā)射的光是朗伯分布,那么就可以計算出亮度和效率。</p><p>  器件中摻雜不同濃度的LiF時的電流密度-電壓、亮度-電壓特性如圖4b和c所示,

23、且與未摻雜的Alq3層作為電子、用雙層LiF/Al陰極的器件作了比較。從圖中可以明顯的看出,即使在低的摻雜情況下也可以大幅度的降低發(fā)光器件的工作電壓。在相同的驅(qū)動電壓下用摻雜的Alq3層來注入和傳輸電荷的器件比未摻雜的器件產(chǎn)生的電流密度明顯大很多。因此,在相同的工作電壓下顯著的增加了發(fā)射強度。例如,在驅(qū)動電壓為8V,用LiF/Al陰極的器件亮度為325cdm-2。對于LiF的摻雜濃度為3%和10%的器件,它們的亮度分別為700cdm-2

24、和950cdm-2,在這個電壓下最佳摻雜濃度為6%的器件的亮度可達(dá)2300cdm-2。所以用摻雜的Alq3層的器件需要的啟動電壓低很多。只需低的工作電壓就可以增強亮度,從而使發(fā)光效率有了最大限度的增加,最佳摻雜器件的驅(qū)動電流范圍相較于它們未摻雜的器件提高了70%左右;如圖4d所示。在19mAcm-2的驅(qū)動電流下產(chǎn)生的最大發(fā)光效率為5cdA-1,這也是在Alq3熒光中使用未摻雜發(fā)光層器件取得的最大成就之一。在這種最好的設(shè)備中,即使在很高的

25、驅(qū)動電流70mAcm-2條件下也只有10%</p><p>  總之,我們已經(jīng)證明,有機電子傳輸層的非堿性n型摻雜是通過共同熱蒸發(fā)實現(xiàn)的。在Alq3薄膜中摻雜LiF將會使電流提高六個數(shù)量級。有趣的是,隨著摻雜材料的固有陷阱逐步填滿,低場的載流子遷移率將高于未摻雜的樣品。大大降低了電阻,摻雜在增強傳輸性能的同時明顯的降低了OLED器件的驅(qū)動電壓。用無機絕緣材料代替?zhèn)鹘y(tǒng)的活性堿性物質(zhì)作為摻雜劑,可以減少有機基質(zhì)中的活

26、性雜質(zhì)的擴散。在有機發(fā)光二極管的傳輸層摻雜物質(zhì),可以使電荷的注入和傳輸達(dá)到平衡,從而使設(shè)備的性能優(yōu)良。P型摻雜與空穴傳輸層若能配對成功,可以降低有機發(fā)光二極管的工作電壓并能進(jìn)一步提高其工作效率。</p><p><b>  實驗</b></p><p>  每平方米電阻為20?的預(yù)制ITO鍍膜玻璃基板清理的順序如下:超聲洗滌劑、去離子水、丙醇、異丙醇、紫外臭氧處理后再

27、用離子水沖洗。已知摻雜Alq3的有機傳輸層是在低于5*10-6托(1托=1.333*102帕斯卡)單獨腔壓下以LiF為0.05-0.5As-1、Alq3為2-5As-1的比例下共蒸發(fā)制備而成,產(chǎn)生200nm厚的有源層。不同的摻雜比例,LiF/Alq3各自從1到15wt%。典型的單載流子器件結(jié)構(gòu),包括玻璃基板/ITO/摻雜LiF的Alq3/金屬陰極(鋁或銀)。另一套設(shè)備包括未摻雜的Alq3和雙層LiF/Al或LiF/Ag電極。在正常環(huán)境溫

28、度下用2400源米的吉時利可以對這些設(shè)備的電流-電壓(I-V)進(jìn)行測量。</p><p>  所有用來制造發(fā)光器件的有機材料,購買時都沒有進(jìn)一步凈化。通常情況下,65nm厚的聚層(3,4-乙烯基):聚(苯乙烯)(PEDOT:PSS;PVP8000Baytron)旋涂在ITO基板上,并在180C0的退火環(huán)境下加熱15分鐘制造。這些操作可以使ITO表面平坦化,從而消除不必要的缺點,并能促進(jìn)空穴更好的注入。其余的OLE

29、D小分子有機層是在2*10-6的壓力下在真空中連續(xù)沉積而成,才能設(shè)備架構(gòu)的需要。玻璃蓋下設(shè)備是用氮氣和紫外化環(huán)氧封裝的。使用吉時利2400源米對器件的電流-電壓-發(fā)射進(jìn)行測量,用Labview對接口數(shù)據(jù)進(jìn)行了收集,用以校準(zhǔn)硅光電二極管的光譜范圍。導(dǎo)通電壓是指首次發(fā)光時的偏壓。能檢測出的最低發(fā)射強度為8cdm-2。</p><p>  收稿日期:2007年7月10日</p><p>  日期

30、:2007年10月9日</p><p>  網(wǎng)上公布:2008年3月28日</p><p><b>  參考文獻(xiàn):</b></p><p>  【1】學(xué)·福雷斯特,自然2004年,428,911。</p><p>  【2】T. B.辛格,N. S. Sariciftci,每年。主修訂版。研究。 2006年,3

31、6,199。</p><p>  【3】a)B.CKrummacher,VE的鐘MK Mathai,SA Choulis,F(xiàn).因此,APPL.物理學(xué).LETT.2006年,88,113506。b)MK Mathai,VE的忠,SA Choulis,BCKrummacher,因此,APPL.物理學(xué).LETT.2006年,88,243512。</p><p>  【4】a)G.霍洛維茨,進(jìn)展.

32、MATER.1998年,10,365。b)C.四Dimitrakopoulos,體育R. L. Malenfant,進(jìn)展.MATER .2002年,14,99。c)A.R·墨菲,J. M.Frechet,化學(xué)。修訂版2007年,107,1066。</p><p>  【5】S.R.福雷斯特P. Peumans,A. Yakimov,APPL物理學(xué).2003年,93,3693。</p>&l

33、t;p>  【6】a)CJ Brabec,NS Sariciftci,JC Hummelen,進(jìn)展。 FUNCT。mater.2001,11,15。b)J. M. Nunzi,C. R.物理學(xué)。 2002年,3,523。c)S.居內(nèi)什,H.Neugebauer北S. Sariciftci,化學(xué).修訂版2007年,107,1324。</p><p>  【7】a)代田Y.,H.影山,化學(xué).修訂版2007年,1

34、07,953。b)V.Coropceanu Comil研究,DAS的菲略,Y.奧利維爾,Y.Silve,J.-L. bre'das,CHEM.修訂版2007年,107,926。</p><p>  【8】W. Brutting,S. Berleb,A. G. Muckl,ORG.電子. 2001年,2,1。</p><p>  【9】a)A.·費德雅K.利奧,X.周,J.

35、S黃,M.霍夫曼,維爾納,J. blochwitz Nimoth,ORG電子.2003年,4,89。b)沃爾澤.K.,B.maennig,K.利奧·費德雅化學(xué)。修訂版2007年,107,1233。c)S.Egusa,美國專利5093698,1992年。</p><p>  【10】a)X.周,J. Blochwitz,M.菲佛,A. Nollau,T.弗里茨,K.利奧,Adv.Funct。進(jìn)展.2001

36、年,11,310。b)W.高,A.卡恩,ORG.電子.2002,3,53。</p><p>  【11】a)J. Kido,T.松本,APPL.物理學(xué).LETT.1998年,73,2866。b)G. Parthasarathy,申A.卡恩,簡福雷斯特,J. APPL.phys.2001,89,4986。c)P. Piromreun H.-S.,Y.申G. Malliaras,JCScott,PJ布羅克,APPL。

37、物理學(xué)。 LETT。 2000年,77,2403。</p><p>  【12】L.S.洪,C·唐,M. G.梅森,APPL.物理學(xué). LETT.1997年,70,152</p><p>  【13】V.忠,S.施,J. Curless,因此,APPL.物理學(xué).LETT.2000年,76,958。</p><p>  【14】a)H.藤川,T.森S. To

38、kito,華塔加;物理學(xué).LETT.1998年,73,2763。b)D. Groeza,A. Turak,XD楓,ZH路,D.約翰遜,R.伍德,APPL.物理學(xué).LETT.2002年,81,3173。</p><p>  【15】a)馬蘭伯特,P.Mark,在固體中注入電流,學(xué)術(shù),紐約1970年。b)KC高W.黃,固體中的電子輸運,佩加蒙1981年,牛津大學(xué)。</p><p>  【16】

39、a)G.G Malliaras,申Y.,D. H. ,H.村田制作,ZHKafafi,APPL.物理學(xué).LETT.2001年,79,2582。b)S. Berleb,W. Bruttig,物理學(xué).Rev.Lett.2002年,89,286601-1。c)H. H.S.C.,研究K.因此,J.Appl.Phys.2003年,94,2003。</p><p>  【17】a)MG梅森,湯CW的LS洪,P.Raycha

40、udhuri,J. Madathil,D。J.吉森,L.嚴(yán),T.勒,高Y.,利意法半導(dǎo)體,廖的LS,低頻程,W。 R. Salaneck,D.A.多斯桑托斯,J.-L. bre'das,J. APPL。物理學(xué)。2001年,89,2756。b)C. G.·李,w,APPL.物理學(xué).LETT.2005年,87號,212108。</p><p>  【18】QT,L.嚴(yán),高YG,DJ吉森,CW湯,AP

41、PL物理學(xué).2000年,87,375。</p><p>  【19】a)HM格朗丹,SM Tadayyon,WN的Lennard,K.格里菲斯,LLCoatsworth,PR諾頓,ZD波波維奇,H.阿齊茲,NX的胡,Org.Electron。 2003年,4,9。b)C.W. T.Lieuwma,W. J. H.凡Gennip研究KJ凡杜倫P. Jonkheijm,RAJ揚森,JW Niemantsverdrie

42、t APPL.suf.SCI.2003年,203,547。</p><p>  【20】M.A馬巴爾,DF柯布連,S.R福雷斯特,美國專利6097147,2000。</p><p>  【21】S.R福雷斯特,D.D.C布拉德利,進(jìn)展ME湯普森。進(jìn)展.2003年,15,1043。</p><p><b>  附件2:外文原文</b></p

43、><p>  LiF as an n-Dopant in Tris(8-hydroxyquinoline) Aluminum</p><p>  Thin Films**</p><p>  By Kaushik Roy Choudhury, Jong-hyuk Yoon, and Franky So*</p><p>  Owing to th

44、eir ease of processing and potential for inexpensive fabrication on low-cost substrates, organic semiconductors have emerged as a novel class of materials for next-generation electronic and optoelectronic devices.The fie

45、ld of organic electronics has generated intense research efforts, spurred on by the promise of a viable alternative to the inorganic materials platform, especially for large-area, flexible electronics applications. Signi

46、ficant progress has been demonstrated towards the</p><p>  Organic semiconductors have low carrier concentration and low carrier mobility.Because of these properties,operating voltages of organic devices are

47、 generally higher than their inorganic counterparts.Voltage drop in organic transport layers has typically been minimized by using extremely thin structures, which are inevitably more vulnerable to shorts and therefore d

48、etrimental to device stability.In addition,because of the low carrier concentration, carrier transport in this class of materials is</p><p>  promised to be an effective way to lower the device operating vol

49、tages.To dope organic semiconductors, typically electron acceptors such as F4-TCNQ are used as p-dopants and electron donors such as alkaline metals are used as n-dopants.While reduced drive voltage and increased brightn

50、ess have been observed in OLED devices by electrical doping,n-dopants are particularly problematic because ofreactivity of alkaline metals and high diffusivity in an organic matrix.In the present study, we demonstra</

51、p><p>  In the first part of the study, single carrier devices were fabricated. Molecular doping was achieved by thermal co-evaporation of LiF and Alq3. The advantage of such molecular doping is the improved st

52、ability compared to alkaline</p><p>  dopants. Insertion of a thin layer of LiF between the organic layer and the metal cathode has previously resulted in reduced driving voltage of an OLED.In another report

53、,LiF doping of electron transport layers was shown to improve device efficiency and reliability. Additionally, photoelectron emission measurements have shown energy-band bending at the Alq3/LiF interface leading to enhan

54、cement in carrier injection at the Alq3/Al interface. These results indicate a favorable influence of LiF towar</p><p>  was varied from1 to 15 wt %. In order to compare the transport characteristics of this

55、 doping scheme, a device comprising an undoped Alq3 layer with a LiF/Al electrode, an architecture widely used in OLED devices, was also fabricated. Both device structures are depicted in Figure 1a.</p><p> 

56、 Current–voltage measurements were performed to investigate the effect of LiF doping concentration in Alq3, if any, on electron injection from the cathode and on the conductivity of the transport layer. Measurements were

57、 also done on devices with undoped Alq3 layer. Figure 1b shows the current density–voltage (J–V) characteristics of variously doped LiF:Alq3 devices, along with an undoped device with a LiF/Al cathode.The data clearly sh

58、ow that doping results in devices with significantly higher c</p><p>  Figure 2a depicts the J–V characteristics in a log–log plot as a</p><p>  function of doping concentration of LiF in Alq3.

59、The first point to note is that current density at all operating voltages increases with LiF doping level, reaching a maximum at a doping concentration of 4–6 wt %.Beyond 10 wt%concentration, the</p><p>  cu

60、rrent density decreases with doping concentration, which might be due to aggregation of LiF. At the highest operating bias, the maximum current density in devices with 4% doping is four orders of magnitude higher than th

61、at in the undoped</p><p>  device and more than two orders higher than its value in the undoped device with LiF/Al bilayer cathode. The other significant observation is the change in the nature of charge tra

62、nsport with LiF doping. It is clear that in the undoped Alq3</p><p>  device and in the one with LiF/Al bilayer cathode, the transport is dominantly trap-limited current (TCL) transport, evident from the V&g

63、t;5dependence of the current density.The nature of transport changes, interestingly, to a trap-free</p><p>  space-charge limited (SCLC) regime J—V2) with increasing LiF doping concentration, indicating that

64、 traps are being filled by the dopant. Even within the trap-free SCLC regime, a dependence of the current on the doping level is distinctly observed. At voltages below 2 V, the current scales linearly with applied bias a

65、nd hence the bulk conductivity (s) of the thin films can be estimated. Even at a nominal doping of 1%, the room temperature conductivity of the Alq3 film increases by four orders of </p><p><b>  (1)<

66、;/b></p><p>  where e is the dielectric constant,m is the carrier mobility, d is the sample thickness. The results show that the low field (5*104Vcm-1) electron mobility in the 4% doped sample is 1.95*10-

67、5cm2v-1s-1 which is about two orders of magnitude higher than the value obtained for undoped Alq3 by time-of-flight (TOF) measurements.The undoped Alq3 electron mobility measured by TOF has a strong field dependence and

68、 it varies from 10-7cm2v-1s-1 at low fields to 10-5cm2v-1s-1 at high fields.Our results in</p><p>  Table 1. Conductivities, carrier concentrations, and mobilities for both</p><p>  doped and un

69、doped samples.</p><p>  Table 1 also shows that the carrier concentration increases from 4.3*1011cm-3 for the undoped samples to 1.3*1015cm-3 for the doped samples, due to doping.</p><p>  In or

70、der to verify the generality of this approach of n-doping of an electron transporting organic semiconductor to enhance charge injection from cathodes with larger work function,electron-only devices with different metal e

71、lectrodes were</p><p>  evaluated. Figure 2b shows the current–voltage data from such a device with electron injection from the ITO electrode. The variation of device current with different concentrations of

72、 the LiF dopant in Alq3 is very similar to the case in which Al cathode was employed. Similar trends of increased device current with higher doping level of LiF were also observed in another variation of the device emplo

73、ying Ag as the cathode.In Figure 3, the J–V data for electron injection from different types of c</p><p>  Based on the carrier transport data, it is apparent that LiF doping enhances conductivity in Alq3 fi

74、lms and it acts as an n-dopant. However, LiF is an insulator and it is not apparent how it acts as an n-dopant in Alq3. It has been shown based on the photoemission results from various groups that there is little chemic

75、al reaction between LiF and Alq3 and the possibility that LiF decomposes to form Liþ to dope Alq3 can be ruled out.Then, an obvious question is whether LiF would decompose during t</p><p>  conventional

76、[17a] and synchrotron-radiation photoemission spectroscopy results that AlF3, Liþ ion, and n-doped Alq3 are formed upon deposition of Al on LiF/Alq3. Results of density functional theory (DFT) calculation also confi

77、rm the following</p><p><b>  reaction:</b></p><p>  3LiF+Al+3Alq3→AlF3+3Li+Alq3- ?Gf≈0</p><p>  Thus, the formation of radical anion of Alq3 is responsible

78、 for the n-doping effect. Hence, an interfacial layer of LiF is commonly used to facilitate electron injection from Al into Alq3. Then the question that arises is whether it is possible that Al atoms are present in the b

79、ulk Alq3 films. Metal diffusion into small molecule and polymer films during evaporation has been reported. Based on secondary ion mass spectroscopy (SIMS) measurements, Gradin et al.reported that silver atoms diffuse fr

80、o</p><p>  more pronounced given that the evaporation temperature for Al is higher than that for Ag, and diffusion of Al is even more likely as voids or pin holes are formed during the evaporation process. T

81、his is probably the reason we experienced a lot of shorting problems in single carrier devices with Al as the top contact metal. Once Al atoms reach the bulk of the Alq3 layer, LiF molecules might be“activated’and become

82、 active dopants in the Alq3 film. This model seems to be consistent with our UPS dat</p><p>  Encouraged by the enhanced charge injection and conductivity results, LiF doped Alq3 electron-injection and trans

83、port layer was used to fabricate heterojunction OLED.N,N0-bis(naphthalen-1-yl)-N,N0-bis(phenyl)benzidine (a-NPD) was used as the hole transporting species while another layer of Alq3 served as the electroluminescent comp

84、onent. A 10 nm thick layer of 2,9-dimethyl-4,7- diphenyl-1,10-phenanthroline (BCP) interposed between the emitting Alq3 layer and the electron transporting layer serve</p><p>  Typical current density–voltag

85、e and luminance–voltage characteristics for devices with different LiF doping concentration are plotted in Figure 4b and c, and these are compared to the results from a device with an undoped Alq3 layer for electron tran

86、sport with a bilayer LiF/Al cathode. It is obvious from these plots that even low doping levels decrease the operating voltage of the light-emitting devices substantially.All devices with doped Alq3 layer, for electron-i

87、njection and transport, genera</p><p>  325 cdm2. For the 3% and 10% LiF doped devices the luminances are 700 cd m2 and 950 cd m2, respectively, and for the optimally 6% doped device the luminance reaches

88、 2300 cdm2 at this applied voltage. Additionally, the devices with doped Alq3 layer exhibit much lower turn-on voltages.The enhancement of luminance accompanied by a lowering of the operating voltage leads to a maximum

89、increase in the luminous efficiency by almost 70% over a wide range of driving currents in the optimally doped de</p><p>  performance of the LiF doped devices is comparable to the alkaline metal-doped devic

90、es reported by Kido et al.These results clearly demonstrate that doped electron transporting layers, owing to enhanced injection and reduced bulk resistance losses, enable the realization of OLEDs with excellent optoelec

91、tronic performance.</p><p>  In conclusion, we have demonstrated facile non-alkaline n-doping of organic electron transport layers through thermal co-evaporation. Doping of LiF in thin films of Alq3 increase

92、s the current by about six orders of magnitude.Interestingly,</p><p>  doping leads to a gradual filling of intrinsic charge traps in the material, resulting in higher low-field carrier mobility compared to

93、undoped samples. Due to the greatly reduced resistivity, doping leads to enhanced transport and significant decrease in the driving voltage in OLEDs. The use of an inorganic insulator as the dopant instead of reactive al

94、kaline materials traditionally used reduces the concern about reactive dopant diffusion in the organic matrix. The doped transport layer in OLED</p><p>  even further.</p><p>  Experimental</

95、p><p>  Prepatterned ITO-coated glass substrates with a sheet resistance of 20 V per square were cleaned via consecutive treatments in the following sequence: sonication in detergent, de-ionized water, acetone,

96、isopropyl alcohol, rinsing in de-ionized water followed by UV ozone treatment. The organic transporting layer of Alq3 doped with known proportions of LiF was fabricated by co-evaporation of Alq3 at 2–5 A° s1 and Li

97、F at 0.05–0.5 A ° s1 from separate sources at a chamber pressure below 5.0106 To</p><p>  For the light emitting devices, all organic materials were used for device fabrication as purchased without a

98、ny further purification.Typically, a 65 nm layer of poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) (PEDOT:PSS; Baytron PVP 8000) was spin-coated onto the cleaned ITO substrate and annealed at 1808C for 15 min i

99、n ambient. This serves to planarize the ITO surface, eliminate unwarranted shorts, and facilitate better hole injection. The rest of the small-molecule organic layers in t</p><p>  Received: July 10, 2007<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論