外文翻譯--對燒結(jié)納米金屬簇合物動力學(xué)的研究:分子動力學(xué)研究_第1頁
已閱讀1頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p>  對燒結(jié)納米金屬簇合物動力學(xué)的研究:分子動力學(xué)研究</p><p>  燒結(jié)過程中對納米金屬的調(diào)查所用的方法是分子動力學(xué)模擬的框架內(nèi)嵌入原子方法。若干分子動力學(xué)模擬技術(shù)是用來觀察和描述的演變的燒結(jié)過程的。能量分布的單一集群是用來記錄審查和在快照的燒結(jié)過程的。燒結(jié)的演變也說明策劃的大規(guī)模中心對每一組來說是隨時間變化的。在燒結(jié)過程中監(jiān)測和測量變化的動能和勢能,從能源的角度來分析機制燒結(jié)的優(yōu)勢。&l

2、t;/p><p>  關(guān)鍵詞:燒結(jié);納米簇;分子動力學(xué)</p><p><b>  1.導(dǎo)言</b></p><p>  燒結(jié),是眾所周知的一個用于做磚的古老的技術(shù),磚是一種瓷器,是一種很有前途的用現(xiàn)代技術(shù)合成的納米結(jié)構(gòu)材料,可以滿足特殊材料的燒結(jié)要求,認識燒結(jié)或聚納米大小集群對控制組的結(jié)構(gòu)組裝材料是重要的。在最近幾年有一些重大研究燒結(jié)或合并采用分

3、子動力學(xué)模擬的報告。第一份燒結(jié)納米金屬簇的報告來自之1996年的朱等人的報告中,燒結(jié)兩銅檢查組就在其工作中。曾慶紅等人報告了燒結(jié)金、銅納米大小陣列. 勞特等對兩鋁組燒結(jié)進行了審查. 劉易斯等在工作中揭示表面擴散和塑性變形的兩個燒結(jié)機制。報告說明樂合并的兩金納米簇,并且發(fā)現(xiàn)聚在仿真原子級的時間比用宏觀方式推導(dǎo)的時間要長.趙等人通過研究聚3銀納米團簇和顯示的溫度依賴性納米簇聚調(diào)查研究聚凝三銀納米多體效應(yīng)。多數(shù)研究還處于初級階段,新的方法和思

4、路,需要對燒結(jié)或合并過程中納米金屬簇進行深入的研究。</p><p>  在本文中,我們利用分子動力學(xué)數(shù)值計算方法去模擬燒結(jié)納米金屬簇的過程。本文安排如下:燒結(jié)與單一納米簇大小有關(guān)性質(zhì)是調(diào)查研究的徑向分布,平均每原子勢能,然后介紹序列快照反映燒結(jié)過程。變化的質(zhì)心的每一組在燒結(jié)被策劃,這反映了進化的燒結(jié)過程,對變化的動能與勢能進行進一步的監(jiān)測。機制的燒結(jié)結(jié)合這些仿真結(jié)果進行討論,最后針對的是一些小結(jié)和結(jié)論。<

5、/p><p><b>  2.仿真詳情</b></p><p>  建模燒結(jié),可實現(xiàn)不同長度尺度,如原子粒子和連續(xù)性,從根本觀點來看,它的重要性是在原子水平上理解燒結(jié)納米團簇的過程,分子動力學(xué)是在原子水平模擬材料系統(tǒng)的一種方法。用傳統(tǒng)的分子動力學(xué)在選定的合奏后續(xù)牛頓運動方程模擬N原子。通過求解牛頓方程數(shù)值,我們可以得到相空間的N原子系統(tǒng)的軌跡。原子的力量是梯度的勢函數(shù),潛

6、在職能嵌入式原子法(資產(chǎn)管理)已成功地用于研究金屬材料,這里,在系統(tǒng)中我們使用約翰遜模式的嵌入式原子方法來描述原子相互作用。</p><p>  納米尺寸團簇在研究中的使用是球形簇不同直徑面心立方金( 456,1088和2112年原子)。在單一集群研究分析徑向能量分布的這些集群在300 K。在燒結(jié)過程中納米大小的兩個1088黃金原子簇是在溫度為300 K條件下研究的,而且它是在監(jiān)測快照,質(zhì)心的變化和能量變化的過程

7、中燒結(jié)的。燒結(jié)過程的三個不同大小集群是在300 K下模擬調(diào)查尺寸效應(yīng)。不斷能源樂團是通過研究燒結(jié)燒結(jié)過程的,因為納米免費集群能最好的描述不斷能源分子動力學(xué)。在整個模擬的時間步長是5000000s。</p><p> ?。?) 單一納米簇的能量分布</p><p>  在最近幾年進行了幾個很好的單一納米簇的研究,這表明,納米粒子簇或其性質(zhì)與相應(yīng)的散裝材料有所不同,如熔點,在冷卻和加熱過程得微

8、觀結(jié)構(gòu)和獨特行為。同樣的表面原子的數(shù)量寓言著內(nèi)部原子簇的數(shù)量,表面能發(fā)揮重要作用,決定了在單一的納米團簇結(jié)構(gòu)和進程中的燒結(jié)。一些研究結(jié)果從我們的計算中提供單一集群,這對于理解納米簇?zé)Y(jié)過程具有重要的意義。我們鴻溝球形簇成數(shù)層沿徑向方向的東西, 每層是0.0000000001米厚。釋放表面能是燒結(jié)過程中驅(qū)動力的關(guān)鍵。</p><p>  (2)視覺圖片描述和幾何描述的演變燒結(jié)</p><p>

9、;  直接視覺方法在模擬系統(tǒng)的監(jiān)測的過程中記錄系統(tǒng)快照,一些數(shù)量方法已被用來描述收縮燒結(jié)過程。質(zhì)譜中心兩組很容易使用,以實現(xiàn)收縮說明,這反映了變化中的原子分布演變燒結(jié)。</p><p> ?。?)變化的動力學(xué)和潛在的能量過程中的燒結(jié)</p><p>  直接視覺方法在模擬系統(tǒng)的監(jiān)測的過程中記錄系統(tǒng)快照,一些數(shù)量方法已被用來描述收縮燒結(jié)過程。質(zhì)譜中心兩組很容易使用,以實現(xiàn)收縮說明,這反映了變

10、化中的原子分布演變燒結(jié)。</p><p>  從以上事實和討論,如果增加大量的集群參加燒結(jié)系統(tǒng)的溫度將會升高,平均動能和溫度之間的關(guān)系是統(tǒng)計物理學(xué)里的波爾茲曼常數(shù)因子。從亨迪等人得出的結(jié)果揭示了溫度變化的過程中,燒結(jié)將確定最終狀態(tài)的系統(tǒng)。</p><p>  三個不同大小集群的平均動能在開頭燒結(jié)時是相同的,最后三組平均動能的顯示有很大的差別。從能源的角度看燒結(jié)表面過程就是潛在的能量釋放過程

11、,穩(wěn)定平均動能所表現(xiàn)的不同價值觀(十二萬一步以后)表明三組大集群燒結(jié)釋放勢能相對較少和規(guī)模較小的集群燒結(jié)釋放相對更多的潛在能源。這是自然的,因為較大的群集在原子表面上提出相對較小的部分,而較小的集群在原子表面上呈現(xiàn)更多的部分,</p><p>  曾慶紅的觀點是贊賞解釋波動,他們認為占主導(dǎo)地位的機制,大概是在不需要熱激活的階段塑性變形和粒子進行輪換,因此,這一階段是有序機械運動和一個可逆過程的過程,即從較高的潛在

12、能量狀態(tài),降低到較低的潛在能量狀態(tài),然后更高的潛在能量狀態(tài)才能實現(xiàn)。進一步的研究還需要更深的揭示微觀機制來解釋這一現(xiàn)象。</p><p><b>  3. 結(jié)論</b></p><p>  兩金納米簇?zé)Y(jié)過程被使用的MD -資產(chǎn)管理所模擬,研究結(jié)果提供了解燒結(jié)機制的的基本知識。機制的燒結(jié)調(diào)查和解釋的方法的特點主要是通過監(jiān)測和分析能源的過程中的變化,從仿真曲線描述能量變

13、化,表面能量釋放和粒子表面擴散強烈的影響演變燒結(jié)過程,尺寸效應(yīng)集群在燒結(jié)過程中發(fā)揮了重要的作用,一些詳細的問題,結(jié)構(gòu)和能源問題需要進一步研究和調(diào)查,今后的研究可能涉及多元素集群燒結(jié)這些有趣的話題。</p><p><b>  參考文獻</b></p><p>  [1] H.Zhu and R.S.Averback:Mater.Sci.Eng.,1995 A204,9

14、6</p><p>  [2] H.Zhu and R.S.Averback:Philos.Mag.Lett.,1996, 3.27.</p><p>  [3] P.Zeng,S.Zajac,P.C.Clapp and J.A.Rifkin:Mater. Sci.Eng.,1.998,A252,301.</p><p>  [4] J.S.Raut,R.B.Bha

15、gat and K.A.Fichthorn:Nanostructured Mater.,1998,10,837.</p><p>  [5] 1 L.J.Lewis,P.Jensen and J.L.Bairat:Phys.Rev.B,</p><p>  1997,56,2248.</p><p>  [6] S.J.Zhao,S.Q.Wang and H.Q.Y

16、e:J Phys.Condens.</p><p>  Matter,2001,13.8061.</p><p>  [7] J.Pan:/nt.Mater.Rev.,2003,48,69.</p><p>  [8] J.M.Haile:Molecular Dynamics Simulation,John Wley& Sons,Inc.,1997.</p&g

17、t;<p>  [9] M.P.Alien and D.J.Tildesley:Computer Simulation of Liquids,0xford Science,Oxford,UK,1996.</p><p>  [10] D.C.Rapaprot:The Art of Molecular Dynam ics Sire—ulation,Cam bridge University Press

18、,UK,2004.</p><p>  [11] M.S.Daw and M.I.Baskes:Phys.Rev.B,1984,29,6443</p><p>  [12] R.A.Johnson:Phys.Rev.B,1988,37,3294.</p><p>  [13] D.J.Oh and R.A.Johnson:Mater.Res.,1988,3(3),4

19、71.</p><p>  [14] R.A.Johnson:Phys.Rev.B,1989,39,12554.</p><p>  [15] J.M ei:Phys.Rev.,1991,43.4653.</p><p>  [16] S.Hendy,S.A.Brown an d M .Hyslop:Phys. Rev. B.2003,68,241403(R).&l

20、t;/p><p>  [17] Yue Qi,T; ix Cagin,W illiam L.Johnson an d William A.Goddard III: Chem .Phys.,2001,115.385.</p><p>  [18] H.S.Nam ,Nong M .Hwan g,B.D.Yu an d J.K.Y0on:Phys.Rev.Lett.,2002,89,275502.

21、</p><p>  [19] J.H.Shim,G.J.Lee an d Y.W .Cho: Su scj.. 2002.512,262.</p><p>  [20] J.H.Shim,S.C.Lee,G.J.Lee,J.Y.Suh an d Y.W .Cho:J.Crystal Growth,2003,250,558.</p><p>  Kinetics I

22、nvestigation of Sintering of Nanometer Size Metal Clusters : A Molecular Dynamics Study</p><p>  The sintering process of nanometer size gold clusters is investigated by using molecular dynamics simulation

23、 in the frame of embedded atomistic method. Several molecular dynamics simulation techniques are used to observe and describe the evolution of the sintering process. The energy distribution for single cluster is examined

24、 and the snapshots of sintering process of two clusters are recorded. The evolution of sintering is also described by plotting the mass center changes with time for each cl</p><p>  KEY WORDS:Sintering;Nanom

25、eter size cluster;Molecular dynamics</p><p>  1.Introduction</p><p>  Sintering,well known as an ancient technique to make brick,china and pottery,is a promising modern technology in the synthes

26、is of nano-structured materials for meeting specific material requirements.Understanding the sintering or coalescence of nanometer size clusters is of primary importance for controlling the structure of cluster—assembled

27、 materials. Some significant studies on sintering or coalescence by using molecular dynamics simulation were reported in recent years. The first report abou</p><p>  In this paper we use molecular dynamics n

28、umerical calculation method to simulate the process of sintering of nanometer size metal clusters. The paper is organized as follows. The properties of single nanometer size cluster relevant to the sintering are investig

29、ated by studying the radial distributions of the average potential energy per atom。Then the sequence snapshots reflecting the sintering process are presented.The variation of the mass center of each cluster is plotted du

30、ring sintering,whic</p><p>  2.Simulation Details</p><p>  Modeling sintering can be realized at different length scales ,such as atom ,particle and continuum .From fundamental point of view it

31、is of importance to understand the process of sintering of nanometer size clusters at the atomic leve1. Molecular dynamics is one of the methods to simulate material system at the atomic leve1. In classical molecular dyn

32、amics simulation N atoms in a selected ensemble follow Newton s equation of motion. By solving Newton s equation numerically we can get the traje</p><p>  Metal materials.Here we use Johnson s model of embe

33、dded atomistic method to describe the interaction of the atoms in the system.</p><p>  The nanometer size clusters used in the study are spherical clusters with different diameters face centered-cubic Au (45

34、6,1088 and 2112 atoms). In single cluster study we analyze radial energy distribution of these clusters at 300 K .The sintering process of two nanometer size gold clusters with 1088 atoms is studied at the temperature of

35、 300 K by monitoring the snapshots,mass center changes and energy variations during the process of sintering.The sintering processes of three different size clu</p><p>  (1)Energy distribution of single nano

36、meter size cluster</p><p>  Several good studies on single nanometer size cluster were done in recent years, which have shown that nanometer size cluster or particle has its properties different from the cor

37、responding bulk materials,such as the melting point,the microstructure and the unique behaviors in the cooling and heating process. As the number of surface atoms is com parable to the number of interior atoms in a clust

38、er,the surface energy plays an important role in determining the single nanometer cluster structure a</p><p>  (2)Visual picture description and geometry description of the evolution of sintering</p>

39、<p>  The direct visual method in monitoring the process of the simulated system is to record the snapshots of the system .Some quantity methods have been used to describe the shrinkage in sintering process. Mass ce

40、nters of two clusters are easily used to realize the description of the shrinkage,which reflect the variation of atom distribution during the evolution of sintering.</p><p>  (3)The variation of kinetic and

41、potential energy during the process of sintering</p><p>  From the facts and discussion above it can be expected the temperature of the system will increase if a lot of clusters take part in the sintering pr

42、ocess.The relationship between average kinetic energy and temperature is Boltzmann constant factor in statistical physics. The result from Hendy et a1. revealed the temperature change in the process of sintering would de

43、termine the final state of the system .</p><p>  The average kinetic energy for three different size clusters is the same at the beginning of sintering. The final average kinetic energy for the three cluster

44、s shows great difference. From the energy point of view the process of sintering is surface potentia1 energy release process. The different values of the steady average kinetic energy(after 120000th step) for the three c

45、lusters indicate larger clusters sintering released relative less potential energy and smaller clusters sintering released</p><p>  The view of Zeng et a1. is appreciated to explain the fluctuation.They thin

46、k the dominant mechanisms are presumably plastic deformation and particle rotation at this stage,which do not require thermal activation.Therefore,this stage is a process of orderly mechanical motion and a reversible pro

47、cess,i.e.,from higher potential energy state to lower potential energy state and then a higher potential energy state,can be realized. Further study is still needed to reveal the micro mechanisms to explai</p><

48、;p>  3.Conclusion</p><p>  The sintering process of two gold nanometer size clusters is simulated by using M D—EAM .The results for the study of single cluster provide the basic knowledge in understanding

49、 the sintering mechanisms.The characteristics and mechanism of sintering are investigated and explained mainly by the method of monitoring and analyzing energy variation in the process.From the simulation curve describin

50、g energy variation,surface energy release and particle diffusion on surface influence the evolution of </p><p>  REFERENCES</p><p>  [1] H.Zhu and R.S.Averback:Mater.Sci.Eng.,1995 A204,96</p&

51、gt;<p>  [2] H.Zhu and R.S.Averback:Philos.Mag.Lett.,1996, 3.27.</p><p>  [3] P.Zeng,S.Zajac,P.C.Clapp and J.A.Rifkin:Mater. Sci.Eng.,1.998,A252,301.</p><p>  [4] J.S.Raut,R.B.Bhagat and

52、K.A.Fichthorn:Nanostructured Mater.,1998,10,837.</p><p>  [5] 1 L.J.Lewis,P.Jensen and J.L.Bairat:Phys.Rev.B,</p><p>  1997,56,2248.</p><p>  [6] S.J.Zhao,S.Q.Wang and H.Q.Ye:J Phys

53、.Condens.</p><p>  Matter,2001,13.8061.</p><p>  [7] J.Pan:/nt.Mater.Rev.,2003,48,69.</p><p>  [8] J.M.Haile:Molecular Dynamics Simulation,John Wley& Sons,Inc.,1997.</p><

54、p>  [9] M.P.Alien and D.J.Tildesley:Computer Simulation of Liquids,0xford Science,Oxford,UK,1996.</p><p>  [10] D.C.Rapaprot:The Art of Molecular Dynam ics Sire—ulation,Cam bridge University Press,UK,2004

55、.</p><p>  [11] M.S.Daw and M.I.Baskes:Phys.Rev.B,1984,29,6443</p><p>  [12] R.A.Johnson:Phys.Rev.B,1988,37,3294.</p><p>  [13] D.J.Oh and R.A.Johnson:Mater.Res.,1988,3(3),471.</

56、p><p>  [14] R.A.Johnson:Phys.Rev.B,1989,39,12554.</p><p>  [15] J.M ei:Phys.Rev.,1991,43.4653.</p><p>  [16] S.Hendy,S.A.Brown an d M .Hyslop:Phys. Rev. B.2003,68,241403(R).</p>

57、<p>  [17] Yue Qi,T; ix Cagin,W illiam L.Johnson an d William A.Goddard III: Chem .Phys.,2001,115.385.</p><p>  [18] H.S.Nam ,Nong M .Hwan g,B.D.Yu an d J.K.Y0on:Phys.Rev.Lett.,2002,89,275502.</p&g

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論