版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Block matching is frequently used in stereo vision, visual tracking, and video compression. In this technique, the current image frame is partitioned into non-overlapping fixed-size rectangular blocks. The goal here is t
2、o estimate the inter-frame motion vector for each block in the current frame by finding the best matching block (according to a matching criterion) in the reference frame, usually the previous frame, in a computationally
3、 efficient manner. In this report, we first give an overview of some of the fast block matching algorithms that have been proposed in the past, then introduce a new fast block matching algorithm.Unlike many block matchin
4、g algorithms proposed in the past that can only assure a local minimum of matching error for the whole block, this algorithm, which is called "lower bound comparison algorithm" in this report, is an algorithm that signif
5、icantly speeds up the computation of the block matching while guaranteeing the global optimal match in the search range. To achieve this, the new algorithm uses lower bound comparison strategy which utilizes an ascending
6、 lower bound list of the matching error to determine the temporary best match position. What the strategy does is to avoid the costly computation of complete matching error at every search position when a lower bound lar
7、ger than the global minimum matching error can be used.A set of common test image sequences are used to test the performance of this new algorithm. In this report, its performance is compared with that of several other b
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Large-scale nesting of irregular patterns using compact neighborhood algorithm.pdf
- Large-scale nesting of irregular patterns using compact neighborhood algorithm.pdf
- A New Cooperative Spectrum Sensing Algorithm.pdf
- A New Cooperative Spectrum Sensing Algorithm.pdf
- A new antialiased line drawing algorithm.pdf
- A new antialiased line drawing algorithm.pdf
- Research on An Adptive Key Frame Extraction Algorithm.pdf
- An Eclectic Image Encryption Scheme Depending on Chaos Algorithm.pdf
- Research on Cerebral Aneurysm DetectionBased on OPTA Algorithm.pdf
- Research on Cerebral Aneurysm DetectionBased on OPTA Algorithm.pdf
- An Improved LoW-rank Rovealing QR Algorithm.pdf
- Soccer Static Video Summarization System Based on Genetic Algorithm.pdf
- A Novel Diversity Guided Particle Swarm Multi-lbjective Optimization Algorithm.pdf
- Multi-ontology Concept Matching Algorithm to Discover Semantic Web Service.pdf
- Optimal Tolerance Allocation Based on Fuzzy Comprehensive Evaluation and Genetic Algorithm.pdf
- MPPT algorithm implementation for solar photovoltaic module using microcontroller.pdf
- MPPT algorithm implementation for solar photovoltaic module using microcontroller.pdf
- large-scale nesting of irregular patterns using compact neighborhood algorithm
- 孫伯乾 Gear crack level identification based on weighted K nearest neighbor classification algorithm.pdf
- An Availability-Aware Task Scheduling Algorithm for Heterogeneous Systems Using Particle Swarm Optimization.pdf
評(píng)論
0/150
提交評(píng)論