版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、南京航空航天大學(xué)碩士學(xué)位論文基于MFCC和小波包變換及模糊SVM的飛機(jī)艙音識(shí)別姓名:姜龍生申請(qǐng)學(xué)位級(jí)別:碩士專(zhuān)業(yè):模式識(shí)別與智能系統(tǒng)指導(dǎo)教師:王從慶2011-01基于 MFCC 和小波包變換及模糊 SVM 的飛機(jī)艙音識(shí)別 ii ABSTRUCT There are many air disasters in the world every year. A necessary evidence in the analysis of air
2、 disaster is Black Box which includes Flight Data Recorder(FDR) and Cockpit Voice Recorder(CVR). CVR records some objective voices which reflect the condition of aircrafe and equipment,and some subjective information whi
3、ch reflects the perception and emotions of pilot,such as voices,aviation noise and background sound.CVR is an important evidence in the analysis of air disaster.It provides important evidence for the air disaster recons
4、truction. The voice signals in CVR are complex and non-stationary,and they have wide frequency range.This paper studies the classify of cockpit voice according to fourier transform,wavelet packet transform and fuzzy SVM.
5、 The major works are summarized as follows: First of all,on the basis of the “aircrafe cabin sound sample library”of the center of aviation safety technology CACC,this paper reduces the noise and intercept the cockpit vo
6、ice with Adobe Auditio.The alarm sounds,switch,knob and other independent samples are successfully separated from the mixed signals. Secondly,fourier transform and wavelet packet transform are used for the independent co
7、ckpit voice, Mel Frequency Cepstrum Coefficient(MFCC) and Wavelet Packet Coefficient (WPC) are extracted as the initial characteristics.The finally characteristics are determined by geometric distance classifiability cri
8、terion. Then,the support vector machine (SVM)algorithm is sensitive to outliers and noise present in the datasets and when it comes to imbalanced samples,SVM produces suboptimal classification models. Fuzzy SVM(FSVM) is
9、 a variant of the SVM algorithm,which has been proposed to handle the problem of outliers and noise.However,like the normal SVM algorithm,FSVM can also suffer from the problem of imbalanced samples.In this paper,we prese
10、nt a method to improve FSVM for imbalanced samples learning,which can be used to handle the imbalanced samples problem in the presence of outliers and noise.Training samples are assigned two different fuzzy-membership va
11、lues,and these membership values are incorporated into the SVM learning algorithm. Based on the experiment results,it can be concluded that the proposed method is a very effective method. Lastly, a software to classify t
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于Gabor小波變換和SVM的人臉表情識(shí)別.pdf
- 基于小波包分解和支持向量機(jī)的艙音識(shí)別技術(shù).pdf
- 基于小波包變換的血細(xì)胞信號(hào)識(shí)別研究.pdf
- 基于小波包和Hilbert-Huang變換的情感腦電識(shí)別研究.pdf
- 基于小波包變換的紋理圖像分割.pdf
- 基于小波變換的SVM在水淹層識(shí)別中的應(yīng)用.pdf
- 基于小波包變換的遙感超譜圖像分類(lèi)識(shí)別方法研究.pdf
- 基于小波包變換與SVM的旋轉(zhuǎn)機(jī)械故障診斷方法研究.pdf
- 基于小波包變換和模糊神經(jīng)網(wǎng)絡(luò)的輸電線路故障診斷研究.pdf
- 基于小波包變換的數(shù)字水印技術(shù).pdf
- 基于小波變換和模糊粗糙集技術(shù)的圖像識(shí)別.pdf
- 基于小波包變換的語(yǔ)音增強(qiáng)算法研究.pdf
- 基于MPEG-Ⅰ和小波包分解的說(shuō)話人識(shí)別.pdf
- 基于SVM和小波變換的圖像壓縮方法研究.pdf
- 基于小波包的人臉識(shí)別算法.pdf
- 基于小波和小波包變換的醫(yī)學(xué)圖像融合算法研究.pdf
- 基于分塊小波包變換和(2D)2PCA的人臉識(shí)別算法.pdf
- 溫度敏感性結(jié)構(gòu)基于小波包變換的損傷識(shí)別研究與應(yīng)用.pdf
- 基于小波包變換的說(shuō)話人識(shí)別特征參數(shù)提取算法研究.pdf
- 基于小波MFCC和HMM的列車(chē)?guó)Q笛識(shí)別方法研究.pdf
評(píng)論
0/150
提交評(píng)論