版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、1MachineLearningResearchFourCurrentDirectionsThomasG.Dietterich■Machinelearningresearchhasbeenmakinggreatprogressinmanydirections.Thisarticlesummarizesfourofthesedirectionsdiscussessomecurrentopenproblems.Thefourdirectio
2、nsare(1)theimprovementofclassificationaccuracybylearningensemblesofclassifiers(2)methodsfscalingupsupervisedlearningalgithms(3)reinfcementlearning(4)thelearningofcomplexstochasticmodels.Thelastfiveyearshaveseenanexplosio
3、ninmachinelearningresearch.Thisexplosionhasmanycauses:Firstseparateresearchcommunitiesinsymbolicmachinelearningcomputationlearningtheyneuralwksstatisticspatternrecognitionhavediscoveredoneanotherbeguntowktogether.Secondm
4、achinelearningtechniquesarebeingappliedtonewkindsofproblemincludingknowledgediscoveryindatabaseslanguageprocessingrobotcontrolcombinatialoptimizationaswellastometraditionalproblemssuchasspeechrecognitionfacerecognitionhw
5、ritingrecognitionmedicaldataanalysisgameplaying.InthisarticleIedfourtopicswithinmachinelearningwheretherehasbeenalotofrecentactivity.ThepurposeofthearticleistodescribetheresultsintheseareastoabroaderAIaudiencetosketchsom
6、eoftheopenresearchproblems.Thetopicareasare(1)ensemblesofclassifiers(2)methodsfscalingupsupervisedlearningalgithms(3)reinfcementlearning(4)thelearningofcomplexstochasticmodels.Thereadershouldbecautionedthatthisarticleisn
7、otacomprehensivereviewofeachofthesetopics.Rathermygoalistoprovidearepresentativesampleoftheresearchineachofthesefourareas.Ineachoftheareastherearemanyotherpapersthatdescriberelevantwk.IapologizetothoseauthswhosewkIwasuna
8、bletoincludeinthearticle.EnsemblesEnsemblesofofClassifiersClassifiersThefirsttopicconcernsmethodsfimprovingaccuracyinsupervisedlearning.Ibeginbyintroducingsomenotation.Insupervisedlearningalearningprogramisgiventraininge
9、xamplesofthefm(x1y1)…(xmym)fsomeunknownfunctiony=f(x).Thexivaluesaretypicallyvectsofthefmwhosecomponentsarediscreterealvaluedsuchasheightweightcolage.ThesearealsocalledthefeatureofXiIusethenotationXijto.refertothejth3hyp
10、otheses.Thelearningalgithmisrunseveraltimeseachtimewithadifferentsubsetofthetrainingexamples.Thistechniquewksespeciallywellfunstablelearningalgithmsalgithmswhoseoutputclassifierundergoesmajchangesinresponsetosmallchanges
11、inthetrainingdata.Decisiontreeneuralwkrulelearningalgithmsareallunstable.Linearregressionnearestneighblinearthresholdalgithmsaregenerallystable.Themoststraightfwardwayofmanipulatingthetrainingsetiscalledbagging.Oneachrun
12、baggingpresentsthelearningalgithmwithatrainingsetthatconsistofasampleofmtrainingexamplesdrawnromlywithreplacementfromtheiginaltrainingsetofmitems.Suchatrainingsetiscalledabootstrapreplicateoftheiginaltrainingsetthetechni
13、queiscalledbootstrapaggregation(Breiman1996a).Eachbootstrapreplicatecontainsontheaverage63.2percentoftheiginalsetwithseveraltrainingexamplesappearingmultipletimes.Anothertrainingsetsamplingmethodistoconstructthetrainings
14、etsbyleavingoutdisjointsubsets.Then10overlappingtrainingsetscanbedividedromlyinto10disjointsubsets.Then10overlappingtrainingsetscanbeconstructedbypingoutadifferentisusedtoconstructtrainingsetsftenfoldcrossvalidationsoens
15、emblesconstructedinthiswayaresometimescalledcrossvalidatedcommittees(ParmantoMunroDoyle1996).ThethirdmethodfmanipulatingthetrainingsetisillustratedbytheADABOOSTalgithmdevelopedbyFreundSchapire(19961995)showninfigure2.Lik
16、ebaggingADABOOSTmanipulatesthetrainingexamplestogeneratemultiplehypotheses.ADABOOSTmaintainsaprobabilitydistributionpi(x)overthetrainingexamples.Ineachiterationiitdrawsatrainingsetofsizembysamplingwithreplacementaccdingt
17、otheprobabilitydistributionpi(x).Thelearningalgithmisthenappliedtoproduceaclassifierhi.Theerrrate£iofthisclassifieronthetrainingexamples(weightedaccdingtopi(x))iscomputedusedtoadjusttheprobabilitydistributiononthetrainin
18、gexamples.(Infigure2notethattheprobabilitydistributionisobtainedbynmalizingasetofweightswi(i)overthetrainingexamples.)Theeffectofthechangeinweightsistoplacemeweightonexamplesthatweremisclassifiedbyhilessweightonexamplest
19、hatwerecrectlyclassified.InsubsequentiterationstherefeADABOOSTconstructsprogressivelymedifficultlearningproblems.Thefinalclassifierhiisconstructsbyaweightedvoteoftheindividualclassifiers.Eachclassifierisweightedaccdingto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--微型機器
- 機器人外文翻譯
- 外文翻譯--機器和機器零件的設(shè)計
- 外文翻譯---工業(yè)機器人外文翻譯(含word版的)
- 機器人設(shè)計外文翻譯
- 機器人外文翻譯.docx
- 機器人外文翻譯.docx
- 機器人外文翻譯.doc
- 外文翻譯--機器人.doc
- 外文翻譯--機器人.doc
- 外文翻譯--機器人.doc
- 外文翻譯---工業(yè)機器人外文翻譯(含word版的).pdf
- 機器人語音識別算法的研究外文翻譯
- 工業(yè)機器人外文翻譯
- 外文翻譯--機構(gòu)和機器原理
- 機器人外文翻譯.docx
- 機器人外文翻譯.docx
- 外文翻譯--機器人.doc
- 外文翻譯--機器人.doc
- 機器人外文翻譯.doc
評論
0/150
提交評論