版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 腸促胰素與糖尿病</b></p><p> 吳綺楠 綜述 陳兵 審校</p><p> QiNan Wu, Bing Chen*</p><p> 第三軍醫(yī)大學(xué)第一附屬醫(yī)院內(nèi)分泌科,重慶,400038</p><p> Endocrinology Department, the Fi
2、rst affiliated Hospital of the Third Military Medical University,</p><p> ChongQing 400038, China</p><p><b> 通訊作者:陳兵</b></p><p> E-mail:chenbing3@medmail.com.cn</p
3、><p> Telephone:+86-23-68754138</p><p> 本文受兩項(xiàng)中華醫(yī)學(xué)會(huì)臨床醫(yī)學(xué)專項(xiàng)資金資助,基金編號(hào):13020120397和13040630448,并受第三軍醫(yī)大學(xué)青年人才基金項(xiàng)目資助,編號(hào):SWH2013QN02 。</p><p> 作者簡(jiǎn)介:吳綺楠,男,1978.12-,副主任醫(yī)師,在讀博士,研究方向:糖尿病及其慢
4、性并發(fā)癥的防治</p><p> 通訊作者簡(jiǎn)介:陳兵,男,1960.11-,主任醫(yī)師,教授,博士生導(dǎo)師,研究方向:增齡性內(nèi)分泌代謝疾病的防治</p><p> 摘要:隨著胰高血糖素樣肽-1、二肽基肽酶-IV抑制劑以及胃轉(zhuǎn)流術(shù)在糖尿病治療領(lǐng)域的應(yīng)用,越來(lái)越多的證據(jù)顯示糖尿病的發(fā)生發(fā)展與胃腸道分泌的一組激素-腸促胰素有關(guān),本文將對(duì)腸促胰素在糖尿病中的研究進(jìn)展和爭(zhēng)論做一綜述。</p&g
5、t;<p><b> Abstract</b></p><p> With the application of glucagon like peptide-1, dipeptidyl peptidase-IV inhibitor and gastric bypass in the treatment of diabetes, more and more evidence
6、reveals that diabetes is associated with a group of gut secretion hormone which called as incretin. This article reviews recent advances and controversies of incretins in diabetes.</p><p><b> 概述</b
7、></p><p> 腸促胰素(incretin)是一類由胃腸道K細(xì)胞和L細(xì)胞分泌的一類胃腸激素,其中主要包括胰高血糖素樣肽-1(glucagon like peptide-1, GLP-1),葡萄糖依賴性促胰島素激素(glucose-dependent insulinotropic polypeptide, GIP)以及胃腸釋放肽(Gastrin-releasing peptide GRP)等。早在20
8、世紀(jì)五十年代,有學(xué)者發(fā)現(xiàn)較之靜脈注射葡萄糖而言,口服葡萄糖刺激的胰島素分泌更顯著,這種效應(yīng)稱之為腸促胰素效應(yīng)(incretin effect),隨后發(fā)現(xiàn),該效應(yīng)所產(chǎn)生的胰島素占到了生理分泌的胰島素一半左右,其中以GLP-1促胰島素分泌效應(yīng)最強(qiáng)[1]。而對(duì)于GLP-1的研究也是最多的,在GLP-1的研究基礎(chǔ)上,學(xué)者們提出胃腸-胰島素軸,進(jìn)一步的研究發(fā)現(xiàn)GLP-1不僅具有調(diào)控進(jìn)食后胰島素的分泌,還可抑制胰高血糖素的分泌,并參與下丘腦對(duì)食欲的
9、控制,延緩胃排空,減輕體重等功能。其中,GLP-1由胰高血糖素原產(chǎn)生,生理情況下GLP-1濃度較低,是因?yàn)槠洚a(chǎn)生后迅速被二肽基肽酶-IV(dipeptidyl peptida</p><p> Incretin與胰島細(xì)胞功能和數(shù)量</p><p> 胰島β細(xì)胞在數(shù)量和功能上的缺陷是1型糖尿病和2型糖尿病共同的重要發(fā)病機(jī)制之一,β細(xì)胞對(duì)葡萄糖和incretin如 GLP-1和GIP的反應(yīng)
10、減弱時(shí)糖尿病的主要特征[3]。其中GLP-1激動(dòng)劑對(duì)胰島β細(xì)胞功能和數(shù)量有顯著影響,其中包括:1)有效促進(jìn)胰島細(xì)胞的增殖,減少胰島β細(xì)胞的凋亡率:由于GLP-1受體屬于α跨膜受體,通過(guò)激活Gsα蛋白,可進(jìn)一步激活多條促進(jìn)胰島β細(xì)胞增殖的信號(hào)通路,當(dāng)小鼠被敲除Gsα后,可表現(xiàn)出胰島β細(xì)胞在數(shù)量上和功能上的缺失[4]。GLP-1尚可作用于FoxO1, PDX-1, Foxa2等一些對(duì)胰島β細(xì)胞數(shù)量和功能有影響的轉(zhuǎn)錄因子[5,6]。在健康小鼠
11、中,2周的Exendin-4治療可增加1.76倍的胰島體積[7],相似的是,每日2次的Exendin-4治療較之未治療組的小鼠,胰島增殖速度達(dá)到2倍[8]。在Zucker大鼠體內(nèi),也得到了相似的結(jié)論[9]。進(jìn)一步的研究發(fā)現(xiàn),GLP-1促進(jìn)胰島細(xì)胞增殖和防止凋亡主要的信號(hào)通路包括PKA,PI3K-Akt[10],雖然這是GLP-1實(shí)現(xiàn)其生理功能研究最多的2個(gè)信號(hào)途徑,而近年多項(xiàng)研究均提示GLP-1通過(guò)這兩條信號(hào)途徑促進(jìn)胰</p>
12、;<p> 以上的研究說(shuō)明,GLP-1主要通過(guò)促進(jìn)胰島細(xì)胞增殖,減少其凋亡,誘導(dǎo)胰腺外分泌細(xì)胞分化成為胰島素分泌細(xì)胞對(duì)胰島細(xì)胞數(shù)量和功能產(chǎn)生影響,但這些過(guò)程涉及的具體機(jī)制尚需進(jìn)一步研究。如由于wnt途徑是典型的致癌信號(hào)途徑,GLP-1激活wnt信號(hào)途徑在促進(jìn)胰島細(xì)胞增殖及抑制凋亡中的作用可能是以后的研究熱點(diǎn),糖尿病和一些癌癥在發(fā)病機(jī)制上是否有相同之處尚需進(jìn)一步探討。再如無(wú)論是尸體來(lái)源、動(dòng)物來(lái)源還是干細(xì)胞來(lái)源,可用于胰島移
13、植的細(xì)胞來(lái)源非常有限,GLP-1可促進(jìn)胰腺導(dǎo)管細(xì)胞分化為胰島樣細(xì)胞的功能可為胰島移植提供另一個(gè)有希望的細(xì)胞來(lái)源,GLP-1可增加移植的胰島細(xì)胞存活率和功能也為未來(lái)胰島移植治療糖尿病帶來(lái)了新的希望。此外,長(zhǎng)期單獨(dú)使用GLP-1很可能打破機(jī)體代謝平衡,由于GIP,GLP-1和胰高血糖素均參與了血糖和胰島素的調(diào)控,目前已經(jīng)有學(xué)者制成GLP-1,GIP和胰高血糖素三聯(lián)制劑并將之用于糖尿病動(dòng)物和人并取得了良好的療效,這也是今后的研究熱點(diǎn)之一[29
14、]。</p><p> Incretin與1型糖尿病</p><p> 1型糖尿病是一種自身免疫疾病,T淋巴細(xì)胞可自發(fā)攻擊本身的胰島β細(xì)胞導(dǎo)致其凋亡,造成胰島素分泌的絕對(duì)缺乏,大多數(shù)患者需要胰島素維持生命,而且在1型糖尿病患者中,仍然存在著胰高血糖素異常和胃排空異常。由于一系列針對(duì)2型糖尿病的臨床前和基礎(chǔ)研究中發(fā)現(xiàn)GLP-1可減少胰島β細(xì)胞凋亡和誘導(dǎo)胰島β細(xì)胞增殖的作用,因此對(duì)于1型糖
15、尿病來(lái)說(shuō),incretin制劑尤其是GLP-1有著潛在的重要治療價(jià)值,可有效對(duì)抗由自身免疫所誘導(dǎo)的胰島β細(xì)胞凋亡。其次,GLP-1可減少胰高血糖素的分泌,抑制胃排空,有助于有效的降低血糖,這也有助于1型糖尿病患者病情進(jìn)展的控制。在NOD小鼠的研究中,人們發(fā)現(xiàn)持續(xù)的輸注GLP-1可增加胰島細(xì)胞再生,減少其凋亡,延緩1型糖尿病發(fā)展歷程[30]。但作者認(rèn)為,單一的GLP-1治療在人類中不太可能取得類似的效應(yīng),聯(lián)合治療仍然是糖尿病治療的基本思路
16、,當(dāng)在NOD小鼠中將GLP-1聯(lián)合其他藥物如抗-CD3,利索茶堿,抗人胸腺淋巴細(xì)胞血清以及胃泌素時(shí),可明顯改善或逆轉(zhuǎn)糖尿病,尤其是在Exendin-4聯(lián)合抗人胸腺淋巴細(xì)胞血清后NOD小鼠的糖尿病改善率達(dá)到了88%[30]。有趣的是,有學(xué)者發(fā)現(xiàn)抗</p><p> 綜合以上,迄今為止的證據(jù)表明,GLP-1受體激動(dòng)劑可以促進(jìn)1型糖尿病患者β細(xì)胞的恢復(fù)和血糖控制。GLP-1激動(dòng)劑與一些免疫調(diào)節(jié)劑的聯(lián)用可更好的保護(hù)β細(xì)
17、胞和改善血糖控制。雖然缺乏較大規(guī)模的臨床試驗(yàn)證實(shí),但可以想象的是,GLP-1激動(dòng)劑很有可能得到美國(guó)FDA批準(zhǔn)在1型糖尿病患者中使用。</p><p> Incretin與2型糖尿病</p><p> GLP-1和GIP分泌和對(duì)胰島素的反應(yīng)缺陷是2型糖尿病的特征之一[36],GLP-1的分泌缺陷以及GLP-1對(duì)胰島素反應(yīng)的缺陷(GLP-1抵抗)存在于很多2型糖尿病患者中,這是補(bǔ)充GLP-
18、1類似物和GLP-1受體激動(dòng)劑的基礎(chǔ),多項(xiàng)研究顯示,補(bǔ)充GLP-1和GLP-1受體激動(dòng)劑可以改善2型糖尿病試驗(yàn)動(dòng)物和人的胰島素分泌,其機(jī)制仍然是GLP-1具有葡萄糖依賴性促胰島素分泌效應(yīng)(glucose-stimulated insulin secretion GSIS),抑制胃排空,抑制胰高血糖素以及改善胰島β細(xì)胞功能[37]。眾所周知,胰島素抵抗在2型糖尿病發(fā)病中的重要一環(huán),炎癥反應(yīng)是胰島素抵抗的原因之一,Lee及同事發(fā)現(xiàn)GLP-1
19、可減輕脂肪細(xì)胞中的炎癥反應(yīng),并認(rèn)為有助于改善胰島素抵抗[38]。另有研究發(fā)現(xiàn)每日皮下注射利拉魯肽可上調(diào)ob/ob小鼠海馬的Mash1基因表達(dá),并通過(guò)上調(diào)脂聯(lián)素(一種能改善胰島素抵抗、高血糖、高血脂等代謝紊亂的脂肪因子),PPARα, PPARγ的表達(dá),減輕肝臟和外周的胰島素抵抗,改善血糖控制和血脂[39,40]。有學(xué)者通過(guò)給小鼠注射表達(dá)Exendin-4的腺病毒,發(fā)現(xiàn)其</p><p> 綜合以上,incret
20、in在2型糖尿病發(fā)病機(jī)制和病理生理進(jìn)展中可能占有重要地位,2型糖尿病中存在GLP-1的分泌和抵抗,大規(guī)模的臨床試驗(yàn)已證實(shí)GLP-1激動(dòng)劑和DPP-IV抑制劑應(yīng)用于2型糖尿病的療效與安全,胃腸道手術(shù)治療2型糖尿病的機(jī)制也主要在于激動(dòng)incretin,但仍需大規(guī)模隨機(jī)對(duì)照的臨床研究以明確其長(zhǎng)期效應(yīng)和安全性,而GIP在2型糖尿病中的作用和地位尚需進(jìn)一步研究以證實(shí)。</p><p><b> 展望</b
21、></p><p> 腸促胰素為基礎(chǔ)的治療在很大程度上已經(jīng)改變了人們對(duì)糖尿病的認(rèn)識(shí)和治療。對(duì)腸促胰素的基礎(chǔ)研究也不斷的發(fā)現(xiàn)其對(duì)于胰島細(xì)胞增殖、凋亡、分化的影響,以上可能會(huì)對(duì)如何維持胰島細(xì)胞數(shù)量和功能以及胰島移植的細(xì)胞來(lái)源提供可能的方向。對(duì)GLP-1聯(lián)合免疫調(diào)節(jié)劑在1型糖尿病動(dòng)物及患者中的研究正不斷的證明其對(duì)1型糖尿病的療效,并有助于更好的了解1型糖尿病發(fā)病的機(jī)制。2型糖尿病患者中廣泛存在著GLP-1和GI
22、P的分泌異常和作用異常,GLP-1類似物和受體激動(dòng)劑可有效降低2型糖尿病患者空腹和餐后血糖水平而不引起低血糖。除了控制血糖,還有研究發(fā)現(xiàn)GLP-1為基礎(chǔ)的化合物也可有效降低體重,減少心血管疾病的危險(xiǎn)因素,糾正能量代謝紊亂。這也有助于人們理解并發(fā)現(xiàn)2型糖尿病的發(fā)病機(jī)制,找到新的防治靶點(diǎn)。</p><p><b> 參考文獻(xiàn)</b></p><p> Drucker
23、DJ. Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls [J]. Diabetes. 2013; 62(10):3316-3323.</p><p> Campbell JE, Drucker DJ. Pharmacology, physiology, and mecha
24、nisms of incretin hormone action [J]. Cell Metab. 2013; 17(6):819-837. </p><p> Hodson DJ, Mitchell RK, Bellomo EA, et al. Lipotoxicity disrupts incretin-regulated human β cell connectivity [J]. J
25、 Clin Invest. 2013; 123(10):4182-4194.</p><p> Xie T, Chen M, Zhang QH, et al.Beta cell-specific deficiency of the stimulatory G protein alpha-subunit Gsalpha leads to reduced beta cell mass and insulin-def
26、icient diabetes [J]. Proc Natl Acad Sci U S A. 2007; 104(49):19601-19606.</p><p> Buteau J, Spatz ML, Accili D. Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic beta-cell ma
27、ss [J]. Diabetes. 2006; 55(5):1190-1196.</p><p> G. Skoglund, M.A. Hussain, G.G. Holz, Glucagon-like peptide 1 stimulates insulin gene promoter activity by protein kinase A-independent activation of the rat
28、 insulin I gene cAMP response element[J]. Diabetes. 2000; 49(7):1156-1164.</p><p> Stoffers DA, Kieffer TJ, Hussain MA, et al., Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeo
29、domain protein IDX-1 and increase islet size in mouse pancreas[J]. Diabetes. 2000; 49(5):741-748.</p><p> Li Y, Cao X, Li LX, et al., Beta-Cell Pdx1 expression is essential for the glucoregulatory, prolifer
30、ative, and cytoprotective actions of glucagon-like peptide-1[J]. Diabetes. 2005; 54(2):482-491.</p><p> Sturis J, Gotfredsen CF, Romer J, et al. GLP-1 derivative liraglutide in rats with beta-cell deficienc
31、ies: influence of metabolic state on beta-cell mass dynamics [J]. Br J Pharmacol, 2003, 140(1): 123-132.</p><p> Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas [J]. Pharm
32、acol Ther, 2007, 113(3): 546-593.</p><p> Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation [J]. J Biol
33、Chem. 2008; 283(13):8723-8735.</p><p> Xiong X, Shao W, Jin T. New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic β-cells: the involve
34、ment of the Wnt signaling pathway effector β-catenin[J]. Islets. 2012 ;4(6):359-365.</p><p> Cornu M, Modi H, Kawamori D, et al. Glucagon-like peptide-1 increases beta-cell glucose competence and proliferat
35、ion by translational induction of insulin-like growth factor-1 receptor expression[J]. J Biol Chem, 2010, 285(14): 10538-10545.</p><p> Rankin MM, Kushner JA. Adaptive beta-cell proliferation is severely re
36、stricted with advanced age [J]. Diabetes. 2009;58(6):1365-1372.</p><p> Li Y, Hansotia T, Yusta B,et al. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis[J]. J Biol Chem. 2003; 278(1
37、):471-478.</p><p> Yusta B, Baggio LL, Estall JL, et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress[J]. Cell Metab. 2006;4(5):391-
38、406.</p><p> Tsunekawa S, Yamamoto N, Tsukamoto K, et al. Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies[J]. J Endoc
39、rinol. 2007; 193(1):65-74.</p><p> Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets [J]. Endocri
40、nology. 2003; 144(12):5149-5158.</p><p> Favaro E, Granata R, Miceli I, et al. The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditio
41、ns, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK)1/2 and cAMP/protein kinase A (PKA) signalling pathways[J]. Diabetologia. 2012; 55(4):1058-1070. </p><p> Johnson JD, Han
42、Z, Otani K, et al. RyR2 and calpain-10 delineate a novel apoptosis pathway in pancreatic islets [J]. J Biol Chem, 2004, 279(23): 24794-24802.</p><p> Zhou J, Wang X, Pineyro MA, et al. Glucagon-like peptide
43、 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells [J]. Diabetes. 1999;48(12):2358-2366.</p><p> Xu G, Kaneto H, Lopez-Avalos MD, et al., GLP-1/exendin-4 facilitates
44、beta-cell neogenesis in rat and human pancreatic ducts [J]. Diabetes Res Clin Pract. 2006; 73(1):107-110.</p><p> Suarez-Pinzon WL, Lakey JR, Rabinovitch A..Combination therapy with glucagon-like peptide-1
45、and gastrin induces beta-cell neogenesis from pancreatic duct cells in human islets transplanted in immunodeficient diabetic mice [J]. Cell Transplant. 2008; 17(6):631-640.</p><p> Suarez-Pinzon WL, Rabinov
46、itch A. Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor induces β-cell neogenesis from adult human pancreatic duct cells implanted in immunodeficient mice [J]. Cell Transplant. 201
47、1; 20(9):1343-1349.</p><p> Gier B, Matveyenko AV, Kirakossian D, et al. Chronic GLP-1 receptor activation by exendin-4 induces expansion of pancreatic duct glands in rats and accelerates formation of dyspl
48、astic lesions and chronic pancreatitis in the Kras(G12D) mouse model[J]. Diabetes. 2012; 61(5):1250-1262.</p><p> Fung M, Thompson D, Shapiro RJ, et al.Effect of glucagon-like peptide-1 (7-37) on beta-cell
49、function after islet transplan-tation in type 1 diabetes [J]. Diabetes Res Clin Pract, 2006, 74 (2):189-193.</p><p> Gault, Harte. Effects of the novel (pro3) GIP antagonist and exendin(9-39) amide on GIP-
50、and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic(ob/ob) mice: evidence that GIP is the major physiological incretin. Diabetologia[J].2003,46(2):222-230.</p&
51、gt;<p> Fukami A, Seino Y, Ozaki N, et al. Ectopic expression of GIP in pancreatic β-cells maintains enhanced insulin secretion in mice with complete absence of proglucagon-derived peptides [J]. Di
52、abetes. 2013; 62(2):510-518.</p><p> Finan B, Ma T, Ottaway N, Müller TD, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans[J]. Sci Transl Med. 2013; 5
53、(209):209ra151.</p><p> Ogawa N, List JF, Habener JF,et al. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4[J], Diabetes. 2004; 53(7):1700-1705.</p>
54、<p> Sherry NA, Chen W, Kushner JA, et al. Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of beta-cells[J]. Endocrinology. 2007;148(11):5136-514
55、4.</p><p> Ávila Dde L, Araújo GR, Silva M, et al. Vildagliptin ameliorates oxidative stress and pancreatic beta cell destruction in type 1 diabetic rats [J]. Arch Med Res. 2013; 44(3):1
56、94-202.</p><p> Rother KI, Spain LM, Wesley RA,et al. Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes[J]. Diabetes Care. 2009;32(12):2251
57、-2257. </p><p> Garg SK, Moser EG, Bode BW, et al. Effect of sitagliptin on post-prandial glucagon and GLP-1 levels in patients withtype 1 diabetes: investigator-initiated, double-blind, randomized, placebo
58、-controlled trial [J]. Endocr Pract. 2013; 19(1):19-28.</p><p> Kielgast U, Krarup T, Holst JJ,et al. Four weeks of treatment with liraglutide reduces insulin dose without loss of glycemic control in type 1
59、 diabetic patients with and without residual beta-cell function [J]. Diabetes Care. 2011; 34(7):1463-1468.</p><p> Pathak V, Vasu S, Flatt PR, et al. Effects of chronic exposure of clonal β-cells to el
60、evated glucose and free fatty acids on incretin receptor gene expression and secretory responses to GIP and GLP-1[J]. Diabetes Obes Metab. 2013 Oct 26.</p><p> Ahrén B. GLP-1 for type 2 diabe
61、tes [J]. Exp Cell Res 2011;317 (9):1239–1245.</p><p> Lee YS, Park MS, Choung JS, et al. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of d
62、iabetes [J]. Diabetologia 2012;55(9):2456-2468.</p><p> Li L, Miao Z, Liu R, et al. Liraglutide improves hippocampal synaptic plasticity associated with increased expression of Mash1 in ob/ob mice [J]. Int
63、J Obes (Lond) 2013; 37(5):678-684.</p><p> Li L, Miao Z, Liu R, et al. Liraglutide prevents hypoadiponectinemia-induced insulin resistance and alterations of gene expression involved in glucose and lipid me
64、tabolism[J]. Mol Med 2011; 17(11-12):1168-1178.</p><p> Samson SL, Gonzalez EV, Yechoor V, et al. Gene therapy for diabetes: metabolic effects of helper-dependent adenoviral exendin 4 expression in a diet-i
65、nduced obesity mouse model [J]. Mol Ther 2008;16(11):1805-1812.</p><p> Shiraishi D, Fujiwara Y, Komohara Y,et al. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 acti
66、vation[J]. Biochem Biophys Res Commun 2012;425(2):304-308.</p><p> vegliati-Baroni G, Saccomanno S, Rychlicki C, et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation an
67、d restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis[J]. S Liver Int 2011; 31(9):1285-1297. </p><p> Buteau J.GLP-1 receptor signaling: effects on pancrea
68、tic beta-cell proliferation and survival [J]. Diabetes Metab 2008; 34 Suppl 2:S73-77.</p><p> Fehse F, Trautmann M, Holst JJ, et al. Exenatide augments first- and second-phase insulin secretion in response
69、to intravenous glucose in subjects with type 2 diabetes [J]. J Clin Endocrinol Metab.2005;90 (11):5991–5997. </p><p> Tourrel C, Bailbe D, Lacorne M, Meile MJ, et al. Persistent improvement of typ
70、e 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4[J]. Diabetes. 2002; 51 (5):1443–1452.</p><p>
71、 Ryan GJ, Foster KT, Jobe LJ. Review of the therapeutic uses of liraglutide[J]. Clin Ther. 2011; 33 (7):793–811.</p><p> Zinman B, Schmidt WE, Moses A, et al. Achieving a clinically relevant composite
72、outcome of an HbA1c of <7% without weight gain or hypoglycaemia in type 2 diabetes: a meta-analysis of the liraglutide clinical trial programme[J]. Diabetes Obes Metab.2012; 14 (1):77–82.</p><p> Mu
73、rphy CE. Review of the safety and efficacy of exenatide once weekly for the treatment of type 2 diabetes mellitus [J]. Ann Pharmacother.2012; 46 (6):812–821.</p><p> Macconell L, Pencek R, Li Y, et al.
74、 Exenatide once weekly: sustained improvement in glycemic control and cardiometabolic measures through 3 years [J]. Diabetes Metab Syndr Obes. 2013; 6:31–41.</p><p> Garbar AJ. Long-acting glucago
75、n-like peptide 1receptor agonists: A review of their efficacy and tolerability [J]. Diabetes Care. 2011; 34 Suppl 2:S279–284.</p><p> Buse JB, Bergenstal RM, Glass LC, et al. Use of twice-daily exenatide in
76、 Basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial [J]. Ann Intern Med.2011;154 (2):103–112.</p><p> Deacon CF, Ahrén B. Physiology of incretins in health and dis
77、ease [J]. Rev Diabet Stud 2011;8(3):293–306.</p><p> Scirica BM, Bhatt DL, Braunwald E,et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus[J]. N Engl J Med. 2013; 369(14
78、):1317-1326. </p><p> White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes [J]. N Engl J Med. 2013; 369(14):1327-1335.</p><p> Schee
79、n AJ, De Flines J, De Roover A, et al. Bariatric surgery in patients with type 2 diabetes: benefits, risks, indications and perspectives [J]. Diabetes Metab. 2009; 35(6 Pt 2):537-543. </p><p> Neff KJ, O
80、9;Shea D, le Roux CW. Glucagon like peptide-1 (GLP-1) dynamics following bariatric surgery: a Signpost to a new frontier[J]. Curr Diabetes Rev. 2013; 9(2):93-101.</p><p> Holst JJ, Knop FK, Vilsbøll T,
81、 et al. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 2011; 34(Suppl. 2):S251–257.</p><p> Meier JJ, Nauck MA. Is the diminished incretin effec
82、t in type 2 diabetes just an epi-phenomenon of impaired β-cell function[J]. Diabetes 2010; 59 (5):1117–1125.</p><p> Canivell S, Ruano EG, Sisó-Almirall A, et al. Gastric inhibitory polypeptide recepto
83、r methylation in newly diagnosed, drug-naïve patients with type 2 diabetes: a case-control study [J]. PLoS One. 2013; 8(9):e75474.</p><p> Fonseca VA, Zinman B, Nauck MA, et al. Confronting the type 2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備名稱-陸軍軍醫(yī)大學(xué)(第三軍醫(yī)大學(xué))
- 01秘密-陸軍軍醫(yī)大學(xué)(第三軍醫(yī)大學(xué))
- 第三軍醫(yī)大學(xué)新橋醫(yī)院
- 設(shè)備技術(shù)參數(shù) - 陸軍軍醫(yī)大學(xué)(第三軍醫(yī)大學(xué))
- 忠縣政府采購(gòu)-陸軍軍醫(yī)大學(xué)(第三軍醫(yī)大學(xué))
- 儀器設(shè)備申購(gòu)計(jì)劃單-陸軍軍醫(yī)大學(xué)(第三軍醫(yī)大學(xué))
- 儀器設(shè)備申購(gòu)計(jì)劃單-陸軍軍醫(yī)大學(xué)(第三軍醫(yī)大學(xué))
- 第三軍醫(yī)大學(xué)軍事預(yù)防醫(yī)學(xué)實(shí)驗(yàn)教學(xué)中心建設(shè)方案
- 免染型蛋白印跡檢測(cè)分析系統(tǒng)-陸軍軍醫(yī)大學(xué)(第三軍醫(yī)大學(xué))
- 刁慶春第三軍醫(yī)大學(xué)西南醫(yī)院皮膚科
- 第三軍醫(yī)大學(xué)理論與課教案首頁(yè)
- 中華醫(yī)學(xué)會(huì)臨床醫(yī)學(xué)科研專項(xiàng)資金-風(fēng)濕病學(xué)發(fā)展與研究資金
- 中華醫(yī)學(xué)會(huì)臨床醫(yī)學(xué)科研專項(xiàng)資金-風(fēng)濕病學(xué)發(fā)展與研究資金
- 抑郁癥治療研究新進(jìn)展-第三軍醫(yī)大學(xué)學(xué)報(bào)
- 軍醫(yī)大學(xué)臨床醫(yī)學(xué)學(xué)士專業(yè)能力評(píng)價(jià)研究.pdf
- 軍醫(yī)大學(xué)臨床醫(yī)學(xué)網(wǎng)絡(luò)課程評(píng)價(jià)指標(biāo)體系研究.pdf
- 中藥熏蒸治療慢性前列腺炎的臨床療效研究 - 第三軍醫(yī)大學(xué)學(xué)報(bào)
- 中華醫(yī)學(xué)會(huì)陜西分會(huì)
- 軍醫(yī)大學(xué)臨床醫(yī)學(xué)專業(yè)本科培養(yǎng)目標(biāo)的研究.pdf
- 第三軍醫(yī)大學(xué)出國(guó)留學(xué)人員群體態(tài)勢(shì)分析及相關(guān)對(duì)策研究.pdf
評(píng)論
0/150
提交評(píng)論