版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> Bridge Engineering</p><p> RAMANKUTTY KANNANKUTTY, City of Minneapolis Department of Public Works</p><p> DONALD J. FLEMMING, Minnesota Department of Transportation</p><p
2、> The scope of the Transportation Research Board’s (TRBs) Committee on General</p><p> Structures includes factors affecting the physical behavior, service life, economy,</p><p> appearanc
3、e, and safety of bridges and structures for transportation systems, and accounting for these factors and their interactions in design procedures and criteria. During the 20th century the United States has essentially cre
4、ated the safest, most efficient, and most effective highway and intermodal transportation network in the world. The challenge for the new millennium will be to further enhance this transportation network. In this paper t
5、he status of bridge engineering at the end of the 2</p><p> BRIDGE STRUCTURE TYPES</p><p> Structure types have been evolving throughout history. The evolution will continue into the future, p
6、erhaps at an accelerated rate.The driving forces behind continued advances in bridge engineering are traffic congestion and costs. In the future, just as now, the public will expect few traffic delays, if any. They will
7、want transportation costs to be as low as possible. Computer technology will enhance traffic management so well that the public will become accustomed to flowing traffic and more </p><p> grow to such a lev
8、el that interactive design programs will become a necessity. Computer programs that automatically prepare detailed plans incorporating changes at the touch of a button will allow the public to modify or add aesthetic det
9、ails right up to the point that construction begins.</p><p><b> Long Span</b></p><p> Posttensioning with high-strength materials will allow traditional concrete and steel bridges,
10、especially box shapes, to reach continually longer spans that challenge steel truss bridges ,and even the shorter-span cable-stayed bridges. Cable-stayed bridges and suspension bridges will most likely continue to domina
11、te the long-span bridge category. Long-span bridges will continue to be the most dramatic, capturing the public’s awareness with highly visible and innovative structures. Shown in Figure</p><p> Medium Span
12、</p><p> Medium spans include spans from 50 to 200 feet and traditionally have been prestressed concrete girders and steel girders. In the future, new materials with high-performance characteristics will be
13、 developed, and the strengths of concrete and steel materials will be enhanced. Stronger materials and innovative design concepts will come together to yield much longer spans. The result will be simpler structures with
14、fewer substructures and a reduction in overall cost. Space frame structures using s</p><p> Short Span</p><p> Concrete slabs, timber slabs, prestressed concrete shapes, and rolled steel shape
15、s currentlyshare the market for spans up to 50 feet. In the future, these types will be challenged by long-span culverts and preengineered, out-of-the-box, prefabricated component bridges.Shown in Figure 3 is a typical l
16、ong-span culvert (44-foot span) that is starting to challenge more typical short-span structures.</p><p><b> DESIGN</b></p><p> Designing bridges according to a standard specificat
17、ion became the norm in the 20th</p><p> century. This will continue in the next century. However, the process of designing will be much different in the future because of changes in specifications, loads, t
18、esting, and computerization.</p><p> Specifications</p><p> The specifications used for structural bridge design at the end of the 20th century are split between the American Association of St
19、ate Highway and Transportation Officials (AASHTO) load factor design (LFD) specification and the load and resistance factor design(LRFD) specification, with LRFD recently being designated as the standard for the future.L
20、FD will continue to be used for some time, but its usage will decline as LRFD becomes more widely accepted. Eventually LFD will be discontinued and </p><p> because of a lack of accepted methods for analyzi
21、ng and designing foundations. Only afte rmore research and specification enhancement will the situation for substructures change.Widespread usage of LRFD will be somewhat slowed by the lack of computer software.The detai
22、led nature of LRFD code requires that designers develop spreadsheets and other computer worksheets to complete computations efficiently. Introduction of programs such as the AASHTO OPIS computer program will help, but th
23、e full bene</p><p><b> Loads</b></p><p> At the heart of the load specifician is the design vehicle. The old HS-20 truck, which has been in use since 1944, is being questioned as
24、a vehicle relevant to traffic needs of the 21st century. Early in the century, two specific questions will arise over the continued use of this vehicle. The first question is whether a different vehicle would better matc
25、h the weigh-inmotion (WIM) data coming from the monitoring systems installed in roadways. Though the data are of questionable accuracy, they </p><p> Field Testing</p><p> To help determine an
26、 appropriate design vehicle, a more comprehensive system of WIM sites will be installed. Because of advances in accuracy and durability of the equipment,dynamic load data will begin to agree with static load data. An acc
27、urate picture will then develop of actual truck axle loads and axle spacings on highway bridges. Emerging technologies such as quartz sensors and fiber-optic enhancements, along with piezo cable,will make more accurate d
28、ata collection possible. Smart bridges w</p><p><b> Analysis</b></p><p> Computer programs capable of analyzing large amounts of data will be developed. Key design parameters such
29、as distribution factors, multiple presence factors, and uniform loads will be verified. Trends in loadings and the way structures respond to those loadings will be made easier to predict. This may lead to a simplificatio
30、n of design factors and equations, which will allow a drastic improvement in the speed of completing design computations.The design of bridges in the 21st century will be mu</p><p> Design Tools</p>
31、<p> More and more states will cooperate in the use of standardized details, computer programs,and drafting details, making designs and plans more similar on a regional basis. Such standardization will tend to redu
32、ce construction costs for contractors and suppliers. Speed and accuracy will be increased.After many years of working separately, computer-aided engineering and computeraided drafting will be successfully integrated. Des
33、igns and plans will be iterative and interactive, and plan preparation </p><p> design errors. More important, optimization of a design will be a keystroke away. Artificial intelligence will supplement inst
34、itutional memories and expand designers’ options for obtaining real-time expert advice. The need to develop expert systems to check the accuracy and reliability of design software will be a challenge to bridge design pro
35、fessionals.Of course, associated with this challenge is the ever-present debate on professional liability.</p><p> Automation</p><p> The Internet and e-mail will be standards for communicatio
36、n between designers, fabricators,and contractors. It will become more common for designers and drafters in different states to combine efforts. Correspondence will be handled electronically, eliminating the time necessar
37、y to print and mail correspondence back and forth. Contractors and fabricators will view the final plans electronically.</p><p><b> Materials</b></p><p> Materials have always play
38、ed a key role in the evolution of bridge structures. Enhancements of the traditional materials of concrete, steel, and timber will continue, but the most revolutionary changes will occur in the areas of fiber-reinforced
39、plastics (FRPs), highstrength and high-performance steel, high-performance concrete (HPC), and the blending of FRP and timber.</p><p><b> FRPs</b></p><p> Today, FRPs are in their
40、infancy as bridge construction materials. However, further experimentation with various combinations of FRP materials will result in innovative and long-lasting solutions to simple and complex bridge construction issues.
41、 Experimental FRP bridge projects have shown that this material has inherent problems in deflection, material ductility, creep, reactivity with concrete and steel, and performance under long-term exposure to ultraviolet
42、light and other environmental facto</p><p> High-Strength and High-Performance Steel</p><p> Unlike FRP, high-strength steel materials will be more readily accepted by bridge engineers.Initial
43、 acceptance will be gained because the new steel materials make it possible to reducestructural dead loads. Wider acceptance of high-strength steels will develop because of their enhanced material properties. Gains made
44、in improving material toughness and weldability of high-strength steels will extend to all grades of steel. Design specifications will continue to be updated to deal with material p</p><p><b> HPC <
45、;/b></p><p> HPC is well on its way to becoming a conventional bridge construction material as a result of Strategic Highway Research Program research and Federal Highway Administration implementation ef
46、forts. The debate as to whether strength or permeability is the primary indicator of long-term durability of HPC will continue among practicing engineers. However, past case studies clearly demonstrate the need for perme
47、ability tests as an indicator of long-term concrete durability. The future is bright for H</p><p><b> Timber</b></p><p> New processes of reinforcing wood will continue to be devel
48、oped, including the combination of glued-laminated timber and FRP composites. The concept is similar to that of reinforced concrete; wood resists the compression load, while FRP composite resists tensile load. The concep
49、t will be commonly used in future timber structures. Advantages of this technology are in areas where bending strength controls the design (as with lower grades of wood). Reinforcing with FRP greatly increases the tensil
50、e</p><p> Other Materials</p><p> A significant future challenge for the construction industry will be the incorporation of recycled materials (including plastics), by-products, and waste mate
51、rials into conventional and HPC construction materials. Future environmental regulations and lack of space to store waste products will bring this issue to a head. Significant time and financial resources will be spent i
52、n developing recycled materials into products suitable for use as construction materials.</p><p> AESTHETIC CONCERNS</p><p> Public Involvement</p><p> Public participation in th
53、e design process has increased in recent years because the public wants better aesthetic treatment of bridges, especially bridges considered neighborhood landmarks. Public participation will continue in the future and wi
54、ll likely increase. To facilitate the process, engineers will display plans using three-dimensional visualization technology. The public will be able to view and comment on the plans at hearings or on the Internet.</p
55、><p> Interactive Design</p><p> Incorporating public comment into the plans will require that last-minute changes be easily accommodated into the design and drafting process. Computer design and
56、 drafting programs that automatically adjust the designs and generate plans will allow for quick modifications. The latest engineering analytical skills will be needed to accommodate this technology. The emphasis on flex
57、ible design will undoubtedly require engineers to increase their aesthetic design skills and overall people skills.</p><p> Aesthetic Process</p><p> Aesthetic treatment of structures will bec
58、ome so common that only the most remote sites will be unaffected. Nearly all bridges will have a detailed aesthetic treatment, or at least an aesthetic review. Extra planning time and design time will become an accepted
59、part of the cost of a structure. The level of public attention will determine the extent of the aesthetic design process and the resources devoted to aesthetic considerations. Three levels of bridge aesthetic considerati
60、on and processes w</p><p><b> 橋梁工程</b></p><p><b> 拉曼克提 卡南克提</b></p><p> 明尼阿波利斯市公共工程處</p><p><b> 唐納德J弗萊明</b></p><p>
61、 明尼蘇達(dá)州交通運(yùn)輸部</p><p> 運(yùn)輸研究委員會(huì)委員在一般結(jié)構(gòu)的研究范圍包括影響物理性狀、使用壽命、經(jīng)濟(jì)、外觀的因素,橋梁和交通系統(tǒng)結(jié)構(gòu)安全,在設(shè)計(jì)程序及標(biāo)準(zhǔn)中說明這些因素與他們的相互作用。在二十世紀(jì),美國(guó)實(shí)質(zhì)上已經(jīng)創(chuàng)造出了世界上最安全、有效而且高效的公路和綜合交通運(yùn)輸網(wǎng)絡(luò)。新千年的挑戰(zhàn)將會(huì)更進(jìn)一步的增強(qiáng)這種交通運(yùn)輸網(wǎng)絡(luò),在這片論文中對(duì)橋梁工程在二十世紀(jì)末的一般運(yùn)輸結(jié)構(gòu)中的地位作出了總結(jié),重點(diǎn)在于橋梁
62、的種類、設(shè)計(jì)方面、新材料、審美方面的考慮和主要政策的問題。試圖對(duì)預(yù)測(cè)橋梁工程在新千年的二三十年內(nèi)的地位作出預(yù)測(cè),這片論文假設(shè)這些預(yù)測(cè)會(huì)成為現(xiàn)實(shí)。</p><p><b> 橋梁結(jié)構(gòu)種類</b></p><p> 結(jié)構(gòu)種類在整個(gè)歷史過程中一直不停地演變,這種演變會(huì)以一種不斷加速的狀態(tài)一直持續(xù)到未來,在橋梁工程持續(xù)不斷進(jìn)步背后的這種驅(qū)動(dòng)力是交通阻塞和成本。就像現(xiàn)在一樣
63、,在未來公眾同樣不希望發(fā)生交通延誤,如果有任何可能,他們都想要交通成本盡可能低,電腦技術(shù)會(huì)提高交通管理效率,這樣公眾能夠習(xí)慣暢通無阻的交通,并且更清楚的知道交通阻塞的位置。從施工中中斷將會(huì)更明顯更難以忍受,考慮到這些狀況,結(jié)構(gòu)類型基本上在能夠減少交通延誤的施工速度高的基礎(chǔ)上選擇,低維護(hù)是必須的,能夠容易快速的加寬結(jié)構(gòu)的能力是選擇結(jié)構(gòu)的優(yōu)先問題,在選擇結(jié)構(gòu)類型時(shí)安全和審美仍將扮演重要角色,保持子結(jié)構(gòu)獨(dú)立于明確區(qū)巷道能夠使跨度更長(zhǎng)并且會(huì)保證
64、工程社區(qū)最好的跨越,公眾的意見會(huì)如此的重要以至于互動(dòng)的設(shè)計(jì)方案會(huì)成為必須,自動(dòng)準(zhǔn)備結(jié)合變化的詳細(xì)方案的一鍵式電腦程序允許公眾在施工開始時(shí)改變或添加審美細(xì)節(jié)。</p><p><b> 新千年的交通運(yùn)輸</b></p><p><b> 大跨度</b></p><p> 高強(qiáng)材料的后張力能夠允許傳統(tǒng)的鋼筋混凝土橋梁,特
65、別是箱形結(jié)構(gòu),達(dá)到持續(xù)更長(zhǎng)的長(zhǎng)度,對(duì)鋼桁架橋、甚至小跨度斜拉橋形成挑戰(zhàn)。斜拉橋和懸索橋是最有可能繼續(xù)控制大跨度橋梁的種類。大跨度橋梁將會(huì)繼續(xù)成為最引人注目的,以高度的觀賞性和創(chuàng)新性的結(jié)構(gòu)吸引公眾的注意力。在圖一中展示的是兩個(gè)令人印象深刻的建筑,迄今為止最長(zhǎng)的混凝土箱梁橋,陽光高架公路橋和休斯敦船舶航道橋。</p><p><b> 中跨度</b></p><p>
66、 中跨度包括50到200英尺的跨度,傳統(tǒng)上一般使用預(yù)應(yīng)力鋼筋和混凝土梁。未來,將會(huì)出現(xiàn)具備高性能特點(diǎn)的新材料,混凝土和鋼材料的強(qiáng)度也會(huì)得到加強(qiáng),強(qiáng)度更高的材料和創(chuàng)新的設(shè)計(jì)理念集合在一起會(huì)產(chǎn)生更長(zhǎng)的跨度,結(jié)果將會(huì)是有更少的子結(jié)構(gòu)的簡(jiǎn)化結(jié)構(gòu),和整體造價(jià)的降低。使用鋼筋混凝土組合的空間框架結(jié)構(gòu)會(huì)因?yàn)橐子谑┕ず拖鄬?duì)低成本進(jìn)入這個(gè)市場(chǎng)。工程準(zhǔn)備,開箱即裝即用,橋梁預(yù)制構(gòu)件也會(huì)變的更加普遍,并且會(huì)開始挑戰(zhàn)個(gè)人設(shè)計(jì),創(chuàng)新對(duì)中跨度橋梁會(huì)引起比其他兩種類
67、型更大的改變,在圖2中,一個(gè)明顯跨越了整個(gè)高速公路的創(chuàng)新性鋼橋梁,這樣的明確跨度巷道將會(huì)成為未來的熱門選擇。</p><p><b> 小跨度</b></p><p> 混凝土板、木材板、預(yù)應(yīng)力混凝土造型和軋制型鋼分享了目前跨度達(dá)到50英尺的橋梁市場(chǎng)。這些橋梁種類的挑戰(zhàn)將是大跨度涵洞和預(yù)工程,開箱即裝即用,橋梁預(yù)制構(gòu)件,圖3所展示的就是一種開始挑戰(zhàn)許多典型小跨度結(jié)
68、構(gòu)的典型大跨度涵洞。</p><p><b> 設(shè)計(jì)</b></p><p> 在二十世紀(jì),通過標(biāo)準(zhǔn)的規(guī)范來設(shè)計(jì)橋梁已經(jīng)成為一種規(guī)則,這種情況會(huì)持續(xù)到下個(gè)世紀(jì),然而,未來設(shè)計(jì)過程將會(huì)因?yàn)橐?guī)范、荷載、檢驗(yàn)和電腦化變得十分不同,</p><p><b> 規(guī)范</b></p><p> 在二十世
69、紀(jì)末,美國(guó)公路運(yùn)輸協(xié)會(huì)用于橋梁結(jié)構(gòu)設(shè)計(jì)的荷載因素設(shè)計(jì)規(guī)范和荷載阻力因素設(shè)計(jì)規(guī)范分道揚(yáng)鑣,荷載阻力因素設(shè)計(jì)規(guī)范近來正在被指定為未來設(shè)計(jì)的標(biāo)準(zhǔn)。荷載因素設(shè)計(jì)規(guī)范會(huì)繼續(xù)使用一段時(shí)間,但是隨著荷載阻力因素規(guī)范設(shè)計(jì)規(guī)范被更廣泛的接受,它的使用會(huì)逐漸減少。最終,荷載因素設(shè)計(jì)規(guī)范將會(huì)停用,而荷載阻力因素設(shè)計(jì)規(guī)范則會(huì)被全面通過,這將會(huì)被證明是正確的行動(dòng)方針,美國(guó)公路運(yùn)輸協(xié)會(huì)的荷載阻力因素規(guī)范將會(huì)隨著新的研究、新的設(shè)計(jì)理念和新的材料持續(xù)不斷演變,荷載阻力
70、因素設(shè)計(jì)方法將會(huì)被證明是高效的,并且會(huì)輕易的適用于各種建筑材料,包括鋼鐵、混凝土、木材和新的高強(qiáng)度塑料聚合物,荷載阻力因素設(shè)計(jì)因?yàn)閮蓚€(gè)方面的原因:子結(jié)構(gòu)設(shè)計(jì)和電腦軟件,并不會(huì)被設(shè)計(jì)界輕易的接受。建立荷載阻力因素設(shè)計(jì)規(guī)范的一個(gè)目的是對(duì)從上部結(jié)構(gòu)到下部結(jié)構(gòu)的每個(gè)部分提供更高平均水平的可靠性。因?yàn)槿狈山邮艿姆椒ㄟM(jìn)行基礎(chǔ)分析和設(shè)計(jì),使用荷載阻力因素設(shè)計(jì)原理進(jìn)行下部結(jié)構(gòu)設(shè)計(jì)在數(shù)年內(nèi)尚不成熟,只有在更多的研究和完善規(guī)范后,下部結(jié)構(gòu)的這種情況才可能
71、得到改觀,荷載阻力因素設(shè)計(jì)代碼的廣泛運(yùn)用將會(huì)被電腦軟件的缺乏而減緩進(jìn)程,荷載阻力因素設(shè)計(jì)代碼的詳細(xì)本質(zhì)需要設(shè)計(jì)者</p><p><b> 荷載</b></p><p> 荷載規(guī)范的核心是設(shè)計(jì)車輛荷載,從1944年沿用至今的老式的HS-20式卡車,作為一種與21世紀(jì)交通需求有關(guān)的交通工具正在被質(zhì)疑,本世紀(jì)初,兩個(gè)關(guān)于繼續(xù)使用這種車輛的具體問題會(huì)逐步出現(xiàn),第一個(gè)問題
72、是一種不同的交通工具是否能更好的與來自路邊安裝的檢測(cè)系統(tǒng)的動(dòng)態(tài)稱重的數(shù)據(jù)搭配。雖然這些數(shù)據(jù)的精確性值得懷疑,它們卻表明了明確的發(fā)展趨勢(shì),那就是卡車的長(zhǎng)度、重量和交通流量統(tǒng)計(jì)較HS-20卡車已經(jīng)顯著的增加了。第二個(gè)問題是無論另一種交通工具是否能簡(jiǎn)化計(jì)算,不同的因素和荷載狀況曾經(jīng)被應(yīng)用到HS-20式卡車使之適合荷載阻力因素設(shè)計(jì)規(guī)范??紤]到這兩個(gè)問題,一種新的“千年卡車”活載配置方法將會(huì)出現(xiàn)。在經(jīng)過大量的數(shù)據(jù)收集后,測(cè)試和監(jiān)控項(xiàng)目就會(huì)啟動(dòng)。&
73、lt;/p><p><b> 現(xiàn)場(chǎng)測(cè)試</b></p><p> 為了幫助設(shè)計(jì)一種合適的交通工具,將會(huì)安裝一種更全面的動(dòng)態(tài)稱重系統(tǒng),因?yàn)檫@種設(shè)備的精確性上的先進(jìn)和耐久性,動(dòng)態(tài)荷載數(shù)據(jù)將會(huì)和靜態(tài)荷載數(shù)據(jù)吻合,一副精確的圖片會(huì)描述出公路橋梁上的實(shí)際貨車軸重和軸間距。新出現(xiàn)的技術(shù)如傳感器和石英光纖技術(shù)的增強(qiáng),還有壓電電纜,使更精確的數(shù)據(jù)收集成為可能,因?yàn)闃蛄簝x表數(shù)目的顯著增
74、加智能話橋梁會(huì)成為新千年的熱門訂單,實(shí)際盈利將會(huì)用十分類似于國(guó)家天氣預(yù)報(bào)追蹤每日溫度的方式被測(cè)量和追蹤,動(dòng)態(tài)稱重的信息將會(huì)與儀表橋梁的信息聯(lián)系起來,高性能計(jì)算機(jī)的應(yīng)用是數(shù)據(jù)的大量分析成為可能,荷載阻力因素設(shè)計(jì)的荷載因素將會(huì)在新數(shù)據(jù)的基礎(chǔ)上更新,特別是鋼結(jié)構(gòu)能從儀器化和現(xiàn)場(chǎng)測(cè)試中獲益。作為對(duì)疲勞和相關(guān)問題的回應(yīng),鋼橋?qū)?huì)裝備儀表來測(cè)定失效機(jī)制,特別是大量荷載周期條件下的低應(yīng)力范圍內(nèi)的裂紋萌生。新興技術(shù)會(huì)導(dǎo)致這些關(guān)系的發(fā)現(xiàn),并帶來設(shè)計(jì)方法的
75、革新,對(duì)造成疲勞的細(xì)節(jié)的具備成本效益的改造應(yīng)用會(huì)帶來那些有疲勞問題的橋梁的橋梁管理計(jì)劃的變革。鑒于這方面知識(shí)的增長(zhǎng),鋼橋多半會(huì)因?yàn)楣δ苌系脑蚨皇墙Y(jié)構(gòu)上的原因被替代。</p><p><b> 分析</b></p><p> 計(jì)算機(jī)程序能夠進(jìn)行的數(shù)據(jù)大量分析將會(huì)開發(fā)出被檢驗(yàn)的核心設(shè)計(jì)參數(shù)如分布系數(shù)、多種存在因素和均布荷載。荷載傾向和結(jié)構(gòu)對(duì)這些荷載的應(yīng)答方式將會(huì)更
76、容易被預(yù)測(cè)。這將會(huì)導(dǎo)致設(shè)計(jì)參數(shù)和公式的簡(jiǎn)化,并且會(huì)在完成設(shè)計(jì)計(jì)算速度方面帶來顯著的提高。二十一世紀(jì)的橋梁設(shè)計(jì)將會(huì)比二十世紀(jì)末更簡(jiǎn)單、更精確。</p><p><b> 設(shè)計(jì)工具</b></p><p> 越來越多的國(guó)家將會(huì)在使用標(biāo)準(zhǔn)化細(xì)節(jié)方面進(jìn)行合作,在區(qū)域化的基礎(chǔ)上,計(jì)算機(jī)程序、起草細(xì)節(jié)和制作設(shè)計(jì)和計(jì)劃將會(huì)更加相似。這種標(biāo)準(zhǔn)化將會(huì)減少承包商和供應(yīng)商的建筑成本。速
77、度和精確性都會(huì)大大增加。單獨(dú)工作多年以后,計(jì)算機(jī)輔助工程和計(jì)算機(jī)起草將被成功的整合。設(shè)計(jì)和計(jì)劃將是迭代和互動(dòng)的,并且計(jì)劃準(zhǔn)備極具成本效應(yīng)。自動(dòng)規(guī)范檢查器和代碼核查員會(huì)通知設(shè)計(jì)工程師,使他們減少設(shè)計(jì)錯(cuò)誤。更重要的是設(shè)計(jì)優(yōu)化將一鍵式解決。為了獲得專家的實(shí)時(shí)建議,人工智能將擴(kuò)大記憶儲(chǔ)存容量增多設(shè)計(jì)者選項(xiàng)。檢查精確性和可靠性設(shè)計(jì)軟件的專家系統(tǒng)的需求對(duì)橋梁設(shè)計(jì)專業(yè)人員來說是一個(gè)挑戰(zhàn)。當(dāng)然,與此相關(guān)的挑戰(zhàn)還有一直以來存在的關(guān)于職業(yè)責(zé)任的爭(zhēng)論。<
78、;/p><p><b> 自動(dòng)化</b></p><p> 因特網(wǎng)和電子郵件將是設(shè)計(jì)者、制造者和承包商的標(biāo)準(zhǔn)通信方式。不同國(guó)家的設(shè)計(jì)師和起草者共同工作將變得更加常見。通訊將會(huì)更加電子化,消除打印和郵件往返的時(shí)間。承包商和制造者將見證電子化的最終計(jì)劃。</p><p><b> 材料</b></p><
79、p> 在橋梁工程的演化中,材料一直以來扮演了一個(gè)非常重要的角色。傳統(tǒng)材料如混凝土、鋼材和木材的加強(qiáng)將會(huì)繼續(xù),但是最革命性的變化將發(fā)生在纖維增強(qiáng)塑料,高強(qiáng)度、高性能鋼材和混凝土,還有玻璃鋼和木材的混合方面。</p><p><b> 纖維增強(qiáng)材料</b></p><p> 今天,在橋梁建筑材料方面纖維增強(qiáng)塑料還處于初級(jí)階段。然而,玻璃鋼材料不同組合的進(jìn)一步實(shí)
80、驗(yàn)將給簡(jiǎn)單和復(fù)雜的橋梁結(jié)構(gòu)帶來創(chuàng)造性的持久的解決。玻璃鋼橋梁工程表明,這種材料在變形,材料延性,蠕變性,與混凝土和鋼材共同作用的反應(yīng),和長(zhǎng)時(shí)間暴露在紫外線和其他環(huán)境因素如水分、凍融、濕度、化學(xué)腐蝕的條件下存在固有的問題,為了幫助解決這些問題,將開發(fā)出材料實(shí)驗(yàn)標(biāo)準(zhǔn)和設(shè)計(jì)方法來適應(yīng)玻璃鋼材料性能。國(guó)家一級(jí)的綜合性研究工作將要展開,使玻璃鋼成為一種可靠的、低維護(hù)的橋梁材料,能夠在職業(yè)設(shè)計(jì)師、建筑工程師合作完成的橋梁結(jié)構(gòu)提供一種令人滿意的性能。
81、橋梁業(yè)主將會(huì)使玻璃鋼成為一種可行的、有競(jìng)爭(zhēng)力的替代傳統(tǒng)材料的橋梁施工材料。大學(xué)很有可能把他們的課程擴(kuò)大到在他們的課業(yè)中包括玻璃鋼和其他復(fù)合材料,使未來的橋梁專業(yè)人士接受并充分利用玻璃鋼。</p><p><b> 高強(qiáng)度、高性能鋼材</b></p><p> 不同于玻璃鋼,高強(qiáng)度鋼材更易于被橋梁工程師認(rèn)可。初步驗(yàn)收取得了成果,因?yàn)樾碌匿撹F材料使減少結(jié)構(gòu)荷載成為可能
82、。高強(qiáng)度鋼鐵材料將會(huì)被更廣泛的接受因?yàn)樗麄儽辉鰪?qiáng)的材料性能。在提高材料的韌性和高強(qiáng)度鋼的焊接性方面取得的成果將擴(kuò)大到所有等級(jí)的鋼材。為了處理諸如焊接性、韌性、制造和結(jié)構(gòu)性能之類的材料特性,設(shè)計(jì)規(guī)格將持續(xù)更新。今天的高性能鋼鐵材料將成為未來建設(shè)結(jié)構(gòu)的標(biāo)準(zhǔn)。橋梁類型上的結(jié)構(gòu)和實(shí)驗(yàn)上的進(jìn)展,如空間框架和創(chuàng)新性復(fù)合結(jié)構(gòu),將導(dǎo)致鋼材料的進(jìn)一步優(yōu)化。對(duì)未來的橋梁結(jié)構(gòu)來說,高強(qiáng)度復(fù)合玻璃鋼有著巨大的潛力。在新千年里高性能鋼筋變的非常普遍,以鋼鐵為核心
83、的復(fù)合鋼筋,不銹鋼介質(zhì)包層和其他復(fù)合型材料將會(huì)在混凝土結(jié)構(gòu)中獲得廣泛的接受。與高性能材料在橋面的使用相結(jié)合,這種結(jié)構(gòu)的平均壽命將會(huì)接近以前建造的類似結(jié)構(gòu)的兩倍,未來需要生命周期成本分析的國(guó)家政策,將對(duì)進(jìn)一步的發(fā)展和使用在橋面使用創(chuàng)新性材料方面,提供一個(gè)巨大的激勵(lì)</p><p><b> 高性能混凝土</b></p><p> 作為公路研究計(jì)劃戰(zhàn)略的研究和公路管理
84、局努力推行,高性能混凝土正在變成傳統(tǒng)橋梁建筑材料,對(duì)在職工程師來說,強(qiáng)度和滲透率誰是長(zhǎng)期耐久性高性能混凝土的主要指標(biāo)的爭(zhēng)論竟會(huì)繼續(xù),然而,過去的案例研究清楚的表明,對(duì)滲透試驗(yàn)作為長(zhǎng)期混凝土耐久性指標(biāo)的需要。因?yàn)楦咝阅芑炷辆哂辛己玫哪途玫暮蛷?qiáng)度特性,使它成為一種多功能材料,前途光明。目前,因?yàn)橘|(zhì)量控制和質(zhì)量保證的問題,妨礙了基于性能的規(guī)范的使用,長(zhǎng)期耐久性評(píng)估是一種事后的考慮??茖W(xué)家和工程師最終將會(huì)開發(fā)出一種裝置,通過瞬間測(cè)試未硬化狀態(tài)
85、的混凝土來瞬間預(yù)計(jì)硬化狀態(tài)的混凝土的長(zhǎng)期耐久特性。</p><p><b> 木材</b></p><p> 強(qiáng)化木材的新流程將會(huì)得到繼續(xù)發(fā)展,包括膠合木的組合和玻璃鋼的結(jié)合。這個(gè)概念類似于鋼筋混凝土,木材抵抗壓縮荷載,玻璃鋼抵抗拉伸荷載。這個(gè)概念將被廣泛應(yīng)用于未來的木結(jié)構(gòu)中。這種技術(shù)的優(yōu)點(diǎn)在于彎矩控制設(shè)計(jì)的區(qū)域(當(dāng)使用低級(jí)別木頭時(shí))。玻璃鋼加固大大增強(qiáng)了橫梁的拉
86、伸能力,這將使低級(jí)別的木材使用在很多結(jié)構(gòu)中十分經(jīng)濟(jì),這種新型復(fù)合材料也可以被用在最小空隙成問題的地方,在木材防腐劑領(lǐng)域的突破將繼續(xù)下去,他們將導(dǎo)致新的將環(huán)保方面的使用、應(yīng)用和木材處理結(jié)合起來的替代工藝和程序的發(fā)展和完善。</p><p><b> 其他材料</b></p><p> 一個(gè)建造業(yè)未來的挑戰(zhàn)將會(huì)是將再生材料(包括塑料),副產(chǎn)品和廢品摻入道常規(guī)和高強(qiáng)度混
87、凝土建筑材料中去。未來的環(huán)保法規(guī)和棄置廢品的空間的缺乏將會(huì)使這個(gè)問題成為重中之重。大量的時(shí)間和財(cái)政資源將被用來把可循環(huán)材料發(fā)展成為適用的建筑材料產(chǎn)品。</p><p><b> 審美考量</b></p><p><b> 公眾參與</b></p><p> 近年來在設(shè)計(jì)過程中公眾參與的增長(zhǎng)是因?yàn)楣娤胍桓玫拿缹W(xué)處
88、理的橋梁,特別是被考慮最為附近地標(biāo)的橋梁,在未來公眾參與將會(huì)繼續(xù)并且將會(huì)更多。為了促進(jìn)這一進(jìn)程,工程師將實(shí)施使用三維可視技術(shù),公眾將可以在聽證會(huì)或者互聯(lián)網(wǎng)上查看和評(píng)論。</p><p><b> 互動(dòng)設(shè)計(jì)</b></p><p> 將公眾意見納入計(jì)劃,將要求最后一分鐘的變化很容易的加入設(shè)計(jì)和起草過程,自動(dòng)調(diào)節(jié)設(shè)計(jì)和生成計(jì)劃的電腦設(shè)計(jì)和起草方案將可以快速修改,適應(yīng)這
89、項(xiàng)技術(shù)將需要最新的工程分析技巧,對(duì)靈活設(shè)計(jì)的強(qiáng)調(diào)無疑需要工程師們加強(qiáng)他們的美學(xué)設(shè)計(jì)技能和綜合的交流技巧。</p><p><b> 審美過程</b></p><p> 結(jié)構(gòu)的審美將變得非常普遍,只有那些最偏遠(yuǎn)的地區(qū)會(huì)不受影響。幾乎所有的橋梁都將有一個(gè)詳細(xì)的審美處理,或者至少是一個(gè)審美審查。額外的規(guī)劃時(shí)間和設(shè)計(jì)時(shí)間將被作為結(jié)構(gòu)成本的一部分而被接納。公眾的關(guān)注程度將在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 畢業(yè)設(shè)計(jì)英文翻譯
- 畢業(yè)設(shè)計(jì) 英文翻譯.docx
- 畢業(yè)設(shè)計(jì)英文翻譯.doc
- 畢業(yè)設(shè)計(jì)英文翻譯.doc
- 畢業(yè)設(shè)計(jì)英文翻譯.doc
- 畢業(yè)設(shè)計(jì)英文翻譯.doc
- 畢業(yè)設(shè)計(jì) 英文翻譯.docx
- 畢業(yè)設(shè)計(jì)英文翻譯.doc
- 畢業(yè)設(shè)計(jì)英文翻譯.doc
- 畢業(yè)設(shè)計(jì)英文翻譯.doc
- 畢業(yè)設(shè)計(jì) 英文翻譯.docx
- 畢業(yè)設(shè)計(jì) 英文翻譯.docx
- 畢業(yè)設(shè)計(jì) 英文翻譯.docx
- 畢業(yè)設(shè)計(jì)英文翻譯.doc
- 畢業(yè)設(shè)計(jì)英文翻譯.doc
- 畢業(yè)設(shè)計(jì)英文翻譯.doc
- 畢業(yè)設(shè)計(jì) 英文翻譯.docx
- 畢業(yè)設(shè)計(jì) 英文翻譯.docx
- 畢業(yè)設(shè)計(jì)英文翻譯.doc
- 畢業(yè)設(shè)計(jì) 英文翻譯.docx
評(píng)論
0/150
提交評(píng)論