版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> 注塑模具自動(dòng)裝配造型</p><p> X. G. Ye, J. Y. H. Fuh and K. S. Lee</p><p> 機(jī)械和生產(chǎn)工程部,新加坡國立大學(xué),新加坡</p><p> 注射模是一種由與塑料制品有關(guān)的和與制品無關(guān)的零部件兩大部分組成的機(jī)械裝置。本文提出了(有關(guān))注射模裝配造型的兩個(gè)主要觀點(diǎn),即描述了在計(jì)算機(jī)上進(jìn)行注射
2、模裝配以及確定裝配中與制品無關(guān)的零部件的方向和位置的方法,提出了一個(gè)基于特征和面向?qū)ο蟮谋磉_(dá)式以描述注射模等級(jí)裝配關(guān)系,該論述要求并允許設(shè)計(jì)者除了考慮零部件的外觀形狀和位置外,還要明確知道什么部份最重要和為什么。因此,它為設(shè)計(jì)者進(jìn)行裝配設(shè)計(jì)(DFA)提供了一個(gè)機(jī)會(huì)。同樣地,為了根據(jù)裝配狀態(tài)推斷出裝配體中裝配對(duì)象的結(jié)構(gòu),一種簡化的特征幾何學(xué)方法也誕生了。在提出的表達(dá)式和簡化特征幾何學(xué)的基礎(chǔ)上,進(jìn)一步深入探討了自動(dòng)裝配造型的方法。</
3、p><p> 關(guān)鍵字:裝配造型;基于特征;注射模;面向?qū)ο蟆?lt;/p><p><b> 1、簡介</b></p><p> 注射成型是生產(chǎn)塑料模具產(chǎn)品最重要的工藝。需要用到的兩種裝備是:注射成型機(jī)和注射?!,F(xiàn)在常用的注射成型機(jī)即所謂的通用機(jī),在一定尺寸范圍內(nèi),可以用于不同形狀的各種塑料模型中,但注射模的設(shè)計(jì)就必須隨塑料制品的變化而變化。模型的
4、幾何因素不同,它們的構(gòu)造也就不同。注射模的主要任務(wù)是把塑料熔體制成塑料制品的最終形狀,這個(gè)過程是由型芯、型腔、鑲件、滑塊等與塑料制品有關(guān)的零部件完成的,它們是直接構(gòu)成塑料件形狀及尺寸的各種零件,因此,這些零件稱為成型零件。(在下文,制品指塑料模具制品,部件指注射模的零部件。)除了注射成型外,注射模還必須完成分配熔體、冷卻,開模,傳輸、引導(dǎo)運(yùn)動(dòng)等任務(wù),而完成這些任務(wù)的注射模組件在結(jié)構(gòu)和形狀上往往都是相似的,它們的結(jié)構(gòu)和形狀并不取決于塑料模
5、具,而是取決于塑料制品。圖1顯示了注射模的結(jié)構(gòu)組成。</p><p> 成型零件的設(shè)計(jì)從塑料制品中分離了出來。近幾年,CAD/CAM技術(shù)已經(jīng)成功的應(yīng)用到成型零件的設(shè)計(jì)上。成型零件的形狀的自動(dòng)化生成也引起了很多研究者的興趣,不過很少有人在其上付諸實(shí)踐,雖然它也象結(jié)構(gòu)零件一樣重要?,F(xiàn)在,模具工業(yè)在應(yīng)用計(jì)算機(jī)輔助設(shè)計(jì)系統(tǒng)設(shè)計(jì)成型零件和注射成型機(jī)時(shí),遇到了兩個(gè)主要困難。第一,在一個(gè)模具裝置中,通常都包括有一百多個(gè)成型零
6、部件,而這些零部件又相互聯(lián)系,相互限制。對(duì)于設(shè)計(jì)者來說,確定好這些零部件的正確位置是很費(fèi)時(shí)間的。第二,在很多時(shí)候,模具設(shè)計(jì)者已想象出工件的真實(shí)形狀,例如螺絲,轉(zhuǎn)盤和銷釘,但是CAD系統(tǒng)只能用于另一種信息的操作。這就需要設(shè)計(jì)者將他們的想法轉(zhuǎn)化成CAD系統(tǒng)能接受的信息(例如線,面或者實(shí)體等)。因此,為了解決這兩個(gè)問題,很有必要發(fā)展一種用于注射模的自動(dòng)裝配成型系統(tǒng)。在此篇文章里,主要講述了兩個(gè)觀點(diǎn):即成型零部件和模具在計(jì)算機(jī)上的防真裝配以及確
7、定零部件在模具中的結(jié)構(gòu)和位置。</p><p> 這篇文章概括了關(guān)于注塑成型的相關(guān)研究,并對(duì)注射成型機(jī)有一個(gè)完整的闡述。通過舉例一個(gè)注射模的自動(dòng)裝配造型,提出一種簡化的幾何學(xué)符號(hào)法,用于確定注射模具零部件的結(jié)構(gòu)和位置。</p><p><b> 2、相關(guān)研究</b></p><p> 在各種領(lǐng)域的研究中,裝配造型已成為一門學(xué)科,就像運(yùn)動(dòng)學(xué)
8、、人工智能學(xué)、模擬幾何學(xué)一樣。Libardi作了一個(gè)關(guān)于裝配造型的調(diào)查。據(jù)稱,很多研究人員已經(jīng)開始用圖表分析模型會(huì)議拓?fù)?。在這個(gè)圖里,各個(gè)元件由節(jié)點(diǎn)組成的,再將這些點(diǎn)依次連接成線段。然而這些變化矩陣并沒有緊緊的連在一起,這將嚴(yán)重影響整體的結(jié)構(gòu),即,當(dāng)其中某一部分移動(dòng)了,其他部分并不能做出相應(yīng)的移動(dòng)。Lee and Gossard開發(fā)了一種新的系統(tǒng),支持包含更多的關(guān)于零部件的基本信息的一種分級(jí)的裝配數(shù)據(jù)結(jié)構(gòu),就像在各元件間的“裝配特征”。
9、變化矩陣自動(dòng)從實(shí)際的線段間的聯(lián)系得到,但是這個(gè)分級(jí)的拓?fù)淠P椭荒苡行У卮怼安糠帧钡年P(guān)系。</p><p> 自動(dòng)判別裝配組件的結(jié)構(gòu)意味著設(shè)計(jì)者可避免直接指定變化的矩陣,而且,當(dāng)它的參考零部件的尺寸和位置被修改的時(shí)候,它的位置也將隨之改變。現(xiàn)在有三種技術(shù)可以推斷組件在模具中的位置和結(jié)構(gòu):反復(fù)數(shù)值技術(shù),象征代數(shù)學(xué)技術(shù),以及象征幾何學(xué)技術(shù)。Lee and Gossard提出一項(xiàng)從空間關(guān)系計(jì)算每個(gè)組成元件的位置和方向
10、的反復(fù)數(shù)值技術(shù)。他們的理論由三步組成:產(chǎn)生條件方程式,降低方程式數(shù)量,解答方程式。方程式有:16個(gè)滿足未知條件的方程式,18個(gè)滿足已知條件的方程式,6個(gè)滿足各個(gè)矩陣的方程式以及另外的兩個(gè)滿足旋轉(zhuǎn)元件的方程式。通常方程式的數(shù)量超過變量的數(shù)量時(shí),應(yīng)該想辦法去除多余的方程式。牛頓迭代法常用來解決這種方程式。不過這種方法存在兩種缺點(diǎn):第一,它太依賴初始解;第二:反復(fù)的數(shù)值技術(shù)在解決空間內(nèi)不能分清不同的根。因此,在一個(gè)完全的空間關(guān)系問題上,有可能
11、解出來的結(jié)果在數(shù)學(xué)理論上有效,但實(shí)際上卻是行不通的。</p><p> Ambler和Popplestone提議分別計(jì)算每個(gè)零部件的旋轉(zhuǎn)量和轉(zhuǎn)變量以確定它們之間的空間關(guān)系,而解出的每個(gè)零部件的6個(gè)變量(3個(gè)轉(zhuǎn)變量和3旋轉(zhuǎn)量)要和它們的空間關(guān)系一致。這種方法要求大量的編程和計(jì)算,才能用可解的形式重寫有關(guān)的方程式。此外,它不能保證每次都能求出結(jié)果,特別是當(dāng)方程式不能被以可解答的形式重寫時(shí)。</p>&
12、lt;p> 為了能確定出滿足一套幾何學(xué)限制條件的剛體的位置與方向,Kramer開發(fā)了一種特征幾何學(xué)方法。通過產(chǎn)生一連串滿足逐漸增長的限制條件的動(dòng)作推斷其幾何特征,這樣將減少物體的自由度數(shù)。Kramer使用的基本參考實(shí)體稱為一個(gè)"標(biāo)識(shí)",由一個(gè)點(diǎn)和兩正交軸構(gòu)成。標(biāo)識(shí)間的7個(gè)限制條件(coincident, in-line, in-plane, parallelFz,offsetFz, offsetFx and
13、helical)都被定了義。對(duì)于一個(gè)包括獨(dú)立元件、相互約束的標(biāo)識(shí)和不變的標(biāo)識(shí)的問題來說,可以用動(dòng)作分析法來解決問題,它將一步一步地最后求出物體的最終的幾何構(gòu)造。在確定物體構(gòu)造的每一個(gè)階段,自由度分析將決定什么動(dòng)作能提供滿足限制物體未加限制部位的自由度。然后計(jì)算該動(dòng)作怎樣能進(jìn)一步降低物體的自由度數(shù)。在每個(gè)階段的最后,給隱喻的裝配計(jì)劃加上合適的一步。根據(jù)Shah和Rogers的分析,Kramer的理論代表了注射模具最顯著的發(fā)展,他的特征幾何
14、學(xué)方法能解出全部的限制條件。和反復(fù)的數(shù)值技術(shù)相比,他的這種方法更具吸引力。不過要實(shí)行這種方法,需要大量的編程。</p><p> 現(xiàn)在雖然已有很多研究者開始研究注射成型機(jī),但仍很少有學(xué)者將注意力放在注射模設(shè)計(jì)上。Kruth開發(fā)了一個(gè)注射模的設(shè)計(jì)支援系統(tǒng)。這個(gè)系統(tǒng)通過高級(jí)的模具對(duì)象(零部件和特征)支持注射模的成型設(shè)計(jì)。因?yàn)橄到y(tǒng)是在AUTOCAD的基礎(chǔ)上設(shè)計(jì)的,因此它只適于線和簡單的實(shí)體模型操作。</p>
15、;<p><b> 3、注射模裝配概述</b></p><p> 主要講述了關(guān)于注射模自動(dòng)裝配造型的兩個(gè)方面:注射模在電腦上的防真裝配和確定結(jié)構(gòu)零件在裝配中的位置和方向。在這個(gè)部分,我們基于特征和面向?qū)ο笳撌隽俗⑸淠Qb配。</p><p> 注射模在電腦上的防真裝配包含著注射模零部件在結(jié)構(gòu)上和空間上的聯(lián)系。這種防真必須支持所有給定零部件的裝配、在相
16、互關(guān)聯(lián)的零部件間進(jìn)行變動(dòng)以及整體上的操作。而且防真裝配也必須滿足設(shè)計(jì)者的下列要求:</p><p> 1)支持能表達(dá)出模具設(shè)計(jì)者實(shí)體造型想象的高級(jí)對(duì)象。</p><p> 2)成型防真應(yīng)該有象現(xiàn)實(shí)一樣的操作功能,就如裝入和干擾檢查。</p><p> 為了滿足這些要求,可用一個(gè)基于特征和面向?qū)ο蟮姆旨?jí)模型來代替注射模。這樣便將模型分成許多部分,反過來由多段模型
17、和獨(dú)立部分組成。因此,一個(gè)分級(jí)的模型最適合于描述各組成部分之間的結(jié)構(gòu)關(guān)系。一級(jí)表明一個(gè)裝配順序,另外,一個(gè)分級(jí)的模型還能說明一個(gè)部分相對(duì)于另一個(gè)部分的確定位置。</p><p> 與直觀的固體模型操作相比,面向特征設(shè)計(jì)允許設(shè)計(jì)者在抽象上進(jìn)行操作。它可以通過一最小套參數(shù)快速列出模型的特征、尺寸以及其方位。此外,由于特征模型的數(shù)據(jù)結(jié)構(gòu)在幾何實(shí)體上的聯(lián)系,設(shè)計(jì)者更容易更改設(shè)計(jì)。如果沒有這些特征,設(shè)計(jì)者在構(gòu)造固體模型幾
18、何特征時(shí)就必須考慮到所有需要的細(xì)節(jié)。而且面向特征的防真為設(shè)計(jì)者提供了更高級(jí)的成型對(duì)象。例如,模具設(shè)計(jì)者想象出一個(gè)澆口的實(shí)體形狀,電腦就能將這個(gè)澆口造型出來。</p><p> 面向?qū)ο笤煨头ㄊ且环N參照實(shí)物的概念去設(shè)計(jì)模型的新思維方式?;镜膱D素是能夠?qū)?shù)據(jù)庫和單一圖素的動(dòng)作聯(lián)系起來的對(duì)象。面向?qū)ο蟮脑煨蛯?duì)理解問題并且設(shè)計(jì)程序和數(shù)據(jù)庫是很有用的。此外,面向?qū)ο蟮难b配體呈現(xiàn)方式使得“子”對(duì)象能繼承其“父”對(duì)象的信息
19、變得更容易。</p><p> Automated Assembly Modelling for Plastic Injection Moulds</p><p> X. G. Ye, J. Y. H. Fuh and K. S. Lee</p><p> Department of Mechanical and Production Engineering,
20、 National University of Singapore, Singapore</p><p> An injection mould is a mechanical assembly that consists of product-dependent parts and product-independent parts. Thispaper addresses the two key issue
21、s of assembly modellingfor injection moulds, namely, representing an injection mouldassembly in a computer and determining the position andorientation of a product-independent part in an assembly. Afeature-based and obje
22、ct-oriented representation is proposedto represent the hierarchical assembly of injection moulds.This representation requires a</p><p> Keywords: Assembly modelling; Feature-based; Injectionmoulds; Object-
23、oriented</p><p> Introduction</p><p> Injection moulding is the most important process for manufacturingplastic moulded products. The necessary equipment consistsof two main elements, the inje
24、ction moulding machineand the injection mould. The injection moulding machines usedtoday are so-called universal machines, onto which variousmoulds for plastic parts with different geometries can bemounted, within certai
25、n dimension limits, but the injectionmould design has to change with plastic products. For differentmoulding geometries, diffe</p><p> The design of a product-dependent part is based on extractingthe geomet
26、ry from the plastic product. In recent years,CAD/CAM technology has been successfully used to helpmould designers to design the product-dependent parts. The automatic generation of the geometrical shape for a productdepe
27、ndentpart from the plastic product has also attracted alot of research interest [1,2]. However, little work has beencarried out on the assembly modelling of injection moulds,although it is as important as the </p>
28、<p> This paper gives a brief review of related research inassembly modelling, and presents an integrated representationfor the injection mould assembly. A simplified geometric symbolicmethod is proposed to determ
29、ine the position and orientationof a part in the mould assembly. An example of automaticassembly modelling of an injection mould is illustrated. </p><p> Related Research</p><p> Assembly mode
30、lling has been the subject of research in diversefields, such as, kinematics, AI, and geometric modelling. Libardiet al. [3] compiled a research review of assembly modelling.They reported that many researchers had used g
31、raphstructures to model assembly topology. In this graph scheme,the components are represented by nodes, and transformationmatrices are attached to arcs. However, the transformation matrices are not coupled together, whi
32、ch seriously affects the transformation procedu</p><p> Automatically inferring the configuration of components in an assembly means that designers can avoid specifying the transformation matrices directly.
33、 Moreover, the position of a component will change whenever the size and position of its reference component are modified. There exist three techniques to infer the position and orientation of a component in the</p>
34、;<p> assembly: iterative numerical technique, symbolic algebraic technique, and symbolic geometric technique. Lee and Gossard [5] proposed an iterative numerical technique to compute the location and orientation
35、 of each component from the spatial relationships. Their method consists of three steps: generation of the constraint equations, reducing the number of equations, and solving the equations. There are 16 equations for “ag
36、ainst” condition, 18 equations for “fit” condition, 6 property equations f</p><p> Kramer [7] developed a symbolic geometric approach for determining the positions and orientations of rigid bodies that sati
37、sfy a set of geometric constraints. Reasoning about the geometric bodies is performed symbolically by generating a sequence of actions to satisfy each constraint incrementally, which results in the reduction of the objec
38、t’s available degrees of freedom (DOF). The fundamental reference entity used by Kramer is called a “marker”, that is a point and two orthogonal axes. Seven </p><p> Although many researchers have been acti
39、vely involved in assembly modelling, little literature has been reported on feature based assembly modelling for injection mould design.</p><p> Kruth et al. [9] developed a design support system for an inj
40、ection mould. Their system supported the assembly design for injection moulds through high-level functional mould</p><p> objects (components and features). Because their system was based on AutoCAD, it cou
41、ld only accommodate wire-frame and simple solid models.</p><p> 3. Representation of Injection Mould Assemblies</p><p> The two key issues of automated assembly modelling for injection moulds
42、are, representing a mould assembly in computers, and determining the position and orientation of a product- independent part in the assembly. In this section, we present an object-oriented and feature-based representatio
43、n for assemblies of injection moulds.</p><p> The representation of assemblies in a computer involves structural and spatial relationships between individual parts. Such a representation must support the co
44、nstruction of an assembly from all the given parts, changes in the relative positioning of parts, and manipulation of the assembly as a whole. Moreover, the representations of assemblies must meet the following requireme
45、nts from designers:</p><p> 1. It should be possible to have high-level objects ready to use while mould designers think on the level of realworld objects.</p><p> 2. The representation of ass
46、emblies should encapsulate operational functions to automate routine processes such as pocketing and interference checks. To meet these requirements, a feature-based and object-oriented hierarchical model is proposed to
47、represent injection moulds. An assembly may be divided into subassemblies, which in turn consists of subassemblies and/or individual components. Thus, a hierarchical model is most appropriate for representing the structu
48、ral relations between components</p><p> Feature-based design [10] allows designers to work at a somewhat higher level of abstraction than that possible with the direct use of solid modellers. Geometric fea
49、tures are instanced, sized, and located quickly by the user by specifying a minimum set of parameters, while the feature modeller works out the details. Also, it is easy to make design changes because of the associativit
50、ies between geometric entities maintained in the data structure of feature modellers. Without features, designers h</p><p> Object-oriented modelling [11,12] is a new way of thinking about problems using mo
51、dels organised around real-world concepts. The fundamental entity is the object, which combines both data structures and behaviour in a single entity. Objectoriented models are useful for understanding problems and desig
52、ning programs and databases. In addition, the objectoriented representation of assemblies makes it easy for a “child” object to inherit information from its “parent”.</p><p> References</p><p>
53、 [1]. K. H. Shin and K. Lee, “Design of side cores of injection moulds from automatic detection of interference faces”, Journal of Design and Manufacturing, 3(3), pp. 225–236, December 1993.</p><p> [2]. Y
54、. F. Zhang, K. S. Lee, Y. Wang, J. Y. H. Fuh and A. Y. C. Nee, “Automatic slider core creation for designing slider/lifter of injection moulds”, CIRP International Conference and Exhibition on Design and Production of Di
55、es and Moulds, pp. 33–38, Turkey, 19–21 June 1997.</p><p> [3]. E. C. Libardi, J. R. Dixon and M. K. Simmon, “Computer environments for design of mechanical assemblies: A research review”, Engineering with
56、Computers, 3(3), pp. 121–136, 1988.</p><p> [4]. K. Lee and D. C. Gossard, “A hierarchical data structure for representing assemblies”, Computer-Aided Design, 17(1), pp. 15– 19, January 1985.</p><
57、;p> [5]. K. Lee and D. Gossard, “Inference of position of components in an assembly”, Computer-Aided Design, 17(1), pp. 20–24, January</p><p><b> 1985.</b></p><p> [6]. A. P. A
58、mbler and R. J. Popplestone, “Inferring the positions of bodies from specified spatial relationships”, Artificial Intelligence, 6, pp. 157–174, 1975.</p><p> [7]. G. Kramer, Solving Geometric Constraint Sys
59、tems: A Case Study in Kinematics, MIT Press, Cambridge, MA, 1992.</p><p> [8]. J. J. Shah and M. T. Rogers, “Assembly modelling as an extension of feature-based design”, Research in Engineering Design, 5(3&
60、amp;4), pp. 218–237, 1993.</p><p> [9]. J. P. Kruth, R. Willems and D. Lecluse, “A design support system using high level mould objects”, CIRP International Conference and Exhibition on Design and Productio
61、n of Dies and Moulds, pp. 39–44, Turkey, 19–21 June, 1997.</p><p> [10]. J. J. Shah, “Assessment of feature technology”, Computer-Aided Design, 23(5), pp. 331–343, June 1991.</p><p> [11]. S.
62、R. Gorti, A. Gupta, G. J. Kim, R. D. Sriram and A. Wong, “An objection-oriented representation for product and design process”, Computer-Aided Design, 30(7), pp. 489–501, June 1998.</p><p> [12]. J. Rumbaug
63、h, M. Blaha, W. Premerlani, et al. Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.</p><p> [13]. Unigraphics Essentials User Manual, Unigraphics Solution Co., Maryland Height
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--注塑模具自動(dòng)裝配造型
- 外文翻譯--注塑模具自動(dòng)裝配造型
- 外文翻譯--注塑模具自動(dòng)裝配造型(英文)
- 外文翻譯--注塑模具自動(dòng)裝配造型.doc
- 外文翻譯--注塑模具自動(dòng)裝配造型.doc
- 外文翻譯---注塑模具自動(dòng)裝配造型 中文
- 外文翻譯--注塑模具自動(dòng)裝配造型(節(jié)選)
- 外文翻譯--注塑模具自動(dòng)裝配造型.doc
- 外文翻譯--注塑模具自動(dòng)裝配造型.doc
- 外文資料翻譯-注塑模具自動(dòng)裝配造型.doc
- 外文翻譯--注塑模具自動(dòng)裝配造型 中文版
- 注塑模具自動(dòng)裝配造型--中英文翻譯.doc
- 注塑模具自動(dòng)裝配造型--中英文翻譯.doc
- 注塑模具自動(dòng)裝配造型--中英文翻譯.doc
- 注塑模具自動(dòng)裝配造型--中英文翻譯.doc
- 外文翻譯-- 注塑模具
- 注塑模具外文翻譯 模具外文翻譯檔
- 自動(dòng)裝配模型注塑模具【pdf+word】【中文7700字】模具類外文翻譯
- 自動(dòng)裝配模型注塑模具【pdf+word】【中文7700字】模具類外文翻譯
- 注塑模具設(shè)計(jì)外文翻譯
評(píng)論
0/150
提交評(píng)論