版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 中文2437字</b></p><p><b> 外文翻譯</b></p><p><b> 譯文一</b></p><p> 織物/服裝濕傳遞性能不同測定方法的對比</p><p><b> 摘要</b></p
2、><p> 現(xiàn)有幾種測定織物/服裝汽態(tài)水滲透或濕阻的方法,這些方法相互之間的區(qū)別與聯(lián)系并沒有得到明確提出,這引出了一個新的命題,即通過對比不同測定方法的結(jié)果,找出它們之間的區(qū)別與聯(lián)系。本課題致力于調(diào)查4種典型測定方法,包括“濕傳遞測試法(模型CS-141)”、“ASTM(美國材料與試驗(yàn)協(xié)會,英文全稱American Society for Testing and Materials)E96正立水杯法”、“新式熱阻濕
3、阻儀器測試法”和“出汗暖體人體模型(Walter)測試法”,所得到的結(jié)果相互之間的聯(lián)系。實(shí)驗(yàn)結(jié)果表明,鑒于測試所用的針織物的透氣性的差異范圍,盡管這4種方法的結(jié)果由于在不同的環(huán)境下進(jìn)行測試而存在些許差異,但它們?nèi)匀淮嬖谥芮新?lián)系。因此,不同測試方法的結(jié)果經(jīng)過適當(dāng)調(diào)整可以相互轉(zhuǎn)換。</p><p> 關(guān)鍵詞:織物,汽態(tài)水傳遞比率,織物舒適性,濕阻</p><p><b> 2.
4、測試方法</b></p><p><b> 2.1測試樣品</b></p><p> 此項(xiàng)實(shí)驗(yàn)的樣品為8塊功能性T恤面料商品,其中4塊的織物組織為雙羅紋,另外4塊為平紋。這些樣品代表了市場中典型的T恤面料。在模擬試穿者試穿效果的實(shí)驗(yàn)中,這些面料被縫制成了長袖T恤,穿在出汗暖體人體模型(Walter)身上。表1列出了實(shí)驗(yàn)所用面料的主要規(guī)格參數(shù)。</
5、p><p> 表1 T恤面料樣品的主要規(guī)格參數(shù)</p><p><b> 2.2 實(shí)驗(yàn)測量</b></p><p> 2.2.1 水分傳遞測試法(模型CS-141)</p><p> 此項(xiàng)測試所用的儀器水分傳遞測試儀由Ludlow公司開發(fā)。該公司聲稱這臺儀器能夠快速簡便地測定織物水傳遞比率。此項(xiàng)測試是基于“氣體滲透規(guī)
6、律”進(jìn)行的。這條規(guī)律是指質(zhì)量傳遞比率與面料阻隔水分滲透的能力、面料上下兩側(cè)的壓強(qiáng)差以及該面料的厚度相關(guān)。圖1展示了水分傳遞測試儀的結(jié)構(gòu)。小密閉水箱兩側(cè)的夾子將面料樣品夾在其垂直方向的正中間。面料下方是高度低于水槽一半的蒸餾水,上方是在測試開始時(shí)經(jīng)過干燥劑干燥過的空氣。水箱內(nèi)水的表面至面料下表面的空氣間隙的高度為10mm。這個水箱被放置在一個溫度為20℃,相對濕度為65%的密室中。實(shí)驗(yàn)過程中,水汽從潮濕的一側(cè)(面料下方)經(jīng)面料樣品傳遞至干
7、燥的一側(cè)(面料上方),濕度傳感器保持著對水箱上半部分濕度變化的監(jiān)測。在濕度從50%上升至60%這個時(shí)間段內(nèi),相對濕度的上升值每隔3分鐘被記錄一次。以g重計(jì)的每h每m2汽態(tài)水傳遞比率可通過將數(shù)據(jù)帶入下列等式中計(jì)算得到。 </p><p> T = (269 × 10?7)(Δ%RH × 60/t)(H)/(100 × 0.02252) (1)</p><p&
8、gt; 式中:Δ%RH—上半層與下半層之間的相對濕度差值的平均值;t—兩次成功讀取數(shù)據(jù)的時(shí)間間隔(t=3min);H—水箱單位體積的水含量(H=45.74gm-3)。</p><p> 圖1 水傳遞性能測試儀結(jié)構(gòu)</p><p> 2.2.2. 美國材料與試驗(yàn)協(xié)會E96正立水杯法</p><p> 此種方法是一種非常常用的測試織物水分傳遞性能的方法。在環(huán)境恒
9、溫恒濕和織物面積已知的條件下,這種方法可用于測定織物垂直方向汽態(tài)水傳遞的比率。圖2展示了這種測試方法的原理。一個被織物樣品覆蓋住的裝有蒸餾水的杯子被放置在溫度20℃,相對濕度65%的可調(diào)節(jié)環(huán)境中。實(shí)驗(yàn)開始時(shí),往杯子內(nèi)倒入80g的水,這將面料下表面至水面的距離確定為19mm。這項(xiàng)測試長達(dá)5天,期間每個杯子質(zhì)量變化都會每天記錄一次。每小時(shí)每平方米的汽態(tài)水傳遞比率(WVTR)可以通過將數(shù)據(jù)帶入以下等式中得到。</p><p
10、> WVTR =G/tA (2)</p><p> 式中:G—有織物覆蓋住的杯子的重量變化值;t—杯子質(zhì)量變化的時(shí)長,以h計(jì);A—測試的織物樣品的面積,以m2計(jì)。</p><p> 圖2 ATSM E96汽態(tài)水傳遞測試的原理</p><p> 2.2.3. 新式熱阻濕阻儀器測試法</p><p> 新式熱阻濕阻儀器由Fan
11、等人開發(fā)。這臺儀器符合ISO(國際標(biāo)準(zhǔn)組織,英文全稱International Organization for Standardization) 11092中明確規(guī)定的測試要求。與傳統(tǒng)的熱阻濕阻儀器相比,它使對水分蒸發(fā)散熱損失和水分蒸發(fā)損失這兩者的模擬測試的同時(shí)進(jìn)行成為可能。此外,這臺儀器可以零下在溫度的條件下運(yùn)行。圖3展示了該儀器的構(gòu)造和工作原理。</p><p> 圖3 新式熱阻濕阻儀器</p>
12、;<p> 通過對蒸發(fā)散熱損失的測定可得知,放在多孔板、夾在人造皮膚和空氣層之間的織物樣品的總濕阻可通過將數(shù)據(jù)帶入下列公式中得到。</p><p><b> ?。?)</b></p><p> 式中:Ret—總濕阻;A—織物樣品的覆蓋面積(A=0.0444 m2);Pss—人體皮膚溫度(被控制在35℃)條件下浸透水汽壓強(qiáng);Psa—環(huán)境溫度條件下浸透水
13、汽壓強(qiáng);Ha是環(huán)境相對濕度(%)。</p><p> 實(shí)驗(yàn)中,首先在儀器上平鋪5層同一品種的面料樣品,等待穩(wěn)定后第一次讀取Ret值。然后取下一層面料,此時(shí)儀器上剩下4層面料,讀取Ret值。依此推類,直到所有5層面料都被拿掉。接下來,將獲得的Ret值參照讀取時(shí)織物的層數(shù)繪制成統(tǒng)計(jì)圖,再利用線性回歸原理調(diào)整后繪制出近似原曲線的直線,這條直線的斜率就是每層織物樣品的濕阻的大小。</p><p>
14、; 2.2.4.出汗暖體人體模型(Walter)測試法</p><p> Walter是由Fan和他的同事研發(fā)的世界上第一種出汗暖體人體模型。圖4展示了一個在測試中穿著T恤的出汗暖體人體模型。這項(xiàng)測試是在室溫20.0±5℃,相對濕度65.0±2%,風(fēng)速0.5±0.3ms-1的恒溫恒濕實(shí)驗(yàn)室中進(jìn)行的。</p><p> 圖4 出汗暖體人體模型(Walter
15、)</p><p> 八塊面料樣品被縫制成尺寸一樣的服裝。測試過程中,人體模特下半身穿著的褲子始終保持一致??倽褡杞?jīng)過推算后可用以下方程式計(jì)算得到。</p><p><b> ?。?)</b></p><p> 式中:A—人體模型的表面積;Pss—人體皮膚溫度條件下浸透水汽壓強(qiáng);Psa—環(huán)境溫度條件下浸透水汽壓強(qiáng);Ha—環(huán)境相對濕度(%),
16、Res代表事先矯正過的織物濕阻(Res=8.6m2PaW-1);He—水分蒸發(fā)熱能損失(He是通過將水分蒸發(fā)熱量損失帶入公式He = λQ得到的);λ—人體皮膚溫度(34℃)條件下水分蒸發(fā)所吸收的熱量(λ=0.67Whg-1);Q—每小時(shí)水分蒸發(fā)所損失的熱量比率。</p><p><b> 4.結(jié)論</b></p><p> 在這項(xiàng)研究中,4臺儀器被用于測定功能型
17、透氣T恤運(yùn)動面料/服裝的汽態(tài)水傳遞比率或濕阻。通過這項(xiàng)研究可以得知,對于典型的功能型T恤面料,從4種測試方法,即 “濕傳遞測試法(模型CS-141)”、“ASTME96正立水杯法”、“新式熱阻濕阻儀器測試法”和“出汗暖體人體模型(Walter)測試法”存在著密切聯(lián)系。這項(xiàng)研究中的任何一種測試方法得到的結(jié)果可以通過使用關(guān)聯(lián)趨勢曲線與另一種方法得到的結(jié)果進(jìn)行對比。關(guān)聯(lián)度曲線中存在的一些誤差可以解釋為由面料種類和測試條件的不同所造成的。<
18、;/p><p> 作者:F Kar, J Fan and W Yu</p><p> 國籍:香港(香港理工大學(xué)紡織與成衣制作系)</p><p> 出處:《測量科技》雜志 2007年第18卷</p><p><b> 原文1</b></p><p> Comparison of differ
19、ent test methods for the measurement of fabric or garment moisture transfer properties</p><p><b> Abstract</b></p><p> Several test methods exist for determining the water vapour p
20、ermeability or resistance of textile fabrics or garments. The differences and interrelationships between these methods are not always clear, which presents a problem in comparing results from different test methods. This
21、 study is aimed at investigating the relationships between the test results from four typical test methods, including the moisture transmission test (Model CS-141), ASTM E96 cup method, sweating guarded hot plate method&
22、lt;/p><p> Keywords: fabric, water vapour transmission rate, clothing comfort, water vapour resistance</p><p> 2. Methods</p><p> 2.1. Samples</p><p> Four interlock a
23、nd four single jersey functional T-shirt fabrics were chosen from commercial sources for the experiment. The samples represent typical T-shirt fabrics in the market. The fabrics were sewn into long-sleeved T-shirts for t
24、he tests on the sweating fabric manikin (Walter) and the wearer trial experiments. Table 1 lists the characteristics of the fabrics used in this study.</p><p> Table1 Characteristics of T-shirt fabric sampl
25、es</p><p> 2.2. Objective physical measurements</p><p> 2.2.1. Moisture transmission test (Model CS-141). </p><p> The moisture transmission tester was developed by Ludlow Corp.,
26、 which was claimed to be a fast and simple method to measure the moisture transmission rate of the fabric materials. It is based on the application of the gas permeability law which proposes that the mass transfer rate i
27、s proportional to the permeability of the barrier, the pressure differential across the barrier and the reciprocal of the barrier thickness. The construction of the moisture transmission tester is shown in figure 1. S<
28、;/p><p> T = (269 × 10?7)(Δ%RH × 60/t)(H)/(100 × 0.02252) (1)</p><p> where %RH is the average of the differences of relative humidity values between the lower and upper halves
29、of the cell, t is the time between successive readings (t = 3 min) and H is the water content in the air at the cell temperature (H=45.74gm-3).</p><p> Figure1 Construction of the moisture transmission test
30、er.</p><p> 2.2.2. ASTM E96 water vapour transmission test</p><p> The ASTM E96 cup method is a very common method for testing the moisture transfer ability of fabrics. It is used to measure t
31、he rate of water vapour transmission perpendicularly through a known area of a fabric to a controlled atmosphere. In this method, as shown in figure 2, a sample covers a cup containing distilled water and placed in a con
32、trolled environment of 20℃,65% relative humidity. By adjusting the initial weight of water in the cup to 80 g, the air gap was set to</p><p> 19 mm. The tests lasted for 5 days and the weight of each cup wa
33、s recorded daily. The water vapour transmission rate (WVTR) in grams per hour and per square metre was calculated by the following equation:</p><p> WVTR =G/tA (2)</p><p> where G is weight
34、change of the cup with fabric sample in grams, t is the time during which G occurred in hours and A is the testing area in square metres.</p><p> Figure2 The principle of the ASTM E96 water vapour transmiss
35、ion test.</p><p> 2.2.3. Sweating guarded hot plate</p><p> This instrument was developed by Fan et al. It meets the requirements specified in the testing method of ISO 11092. Compared with co
36、nventional sweating guarded hot plates, it allows simultaneous measurement of evaporative heat loss and water loss. The instrument can also be placed in subzero conditions for testing. Figure 3 shows the schematic diagra
37、m and the apparatus of the instrument.</p><p> Figure3 Sweating guarded hot plate</p><p> From the measurement of the evaporative heat loss, the total moisture vapour resistance of the fabric
38、sample on the plate together with the manmade skin and the surface air layer can be calculated by</p><p><b> (3)</b></p><p> where Ret is the total moisture vapour resistance, A is
39、 the sample covering area (A = 0.0444 m2), Pss is the saturated vapour pressure at the skin temperature (controlled at 35 ℃), Psa is the saturated vapour pressure at the ambient temperature and Ha is the ambient relative
40、 humidity (%).</p><p> During the testing, five layers of fabric samples were first placed on the instrument. After stabilization, the Ret value, when five layers of fabric samples were placed, was measured
41、. Then one layer of fabric sample was taken off and the Ret value, when four layers of fabric samples were placed, was measured. The experiment continued with the Ret value for one, two, three, four and five layers of sa
42、mples being obtained. The Ret value was then plotted against the number of layers in a graph. Aft</p><p> 2.2.4. Sweating fabric manikin (Walter)</p><p> Sweating fabric manikin (Walter) is th
43、e first sweating fabric manikin developed by Fan and his co-workers. Figure 4 shows the manikin wearing a T-shirt during the test. The experiment was carried out in a climatic chamber at 20.0 ± 0.5℃ and 65.0 ±
44、2% RH with an air velocity of 0.5 ± 0.3 m s?1.</p><p> Figure4 Sweating fabric manikin (Walter)</p><p> The T-shirts made of the eight fabrics were all in the same size. During the tests,
45、 the pants were kept the same for all T-shirt samples. The total moisture vapour resistance was calculated using the following formula:</p><p><b> (4)</b></p><p> where A is the su
46、rface area of the manikin, Pss is the saturated vapour pressure at the skin temperature, Psa is the saturated vapour pressure at the ambient temperature and Ha is the ambient relative humidity (%), and Res is the moistur
47、e vapour resistance of the fabric skin which was calibrated in advance (Res=8.6m2PaW-1, He is the evaporative heat loss. He was calculated from the measurement of evaporative water loss, He = λQ, where λ is the heat of e
48、vaporation of water at the skin temperature</p><p> 4. Conclusions</p><p> In this study, four instruments were used to evaluate the water vapour transmission rate or moisture vapour resistanc
49、e of air permeable functional T-shirt fabrics/garments. It can be concluded from this investigation that, for typical functional T-shirt fabrics, the test results from the four test methods, namely themoisture transmissi
50、on test (ModelCS-141),ASTM E96 cup method, novel sweating guarded hot plate and the sweating fabric manikin (Walter) correlate well. The results from each of these</p><p> explained by the effect of the dif
51、ferent testing conditions on the different types of fabrics.</p><p> Author:F Kar, J Fan and W Yu</p><p> Nationality:Hong Kong (Institute of Textiles and Clothing, The Hong Kong Polytechnic U
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 織物服裝濕傳遞性能不同測定方法的對比外文文獻(xiàn)翻譯
- 液氨處理前后麻織物的濕傳遞性能研究.pdf
- 藏氆氌織物的熱濕傳遞性能及測試方法比較研究.pdf
- 聚乳酸纖維及織物濕傳遞性能的研究.pdf
- 織物熱傳遞性能測試方法的研究.pdf
- 應(yīng)用神經(jīng)網(wǎng)絡(luò)預(yù)測織物熱濕傳遞性能.pdf
- 竹漿纖維及其織物的濕傳遞性能及結(jié)構(gòu)性能研究.pdf
- 噴濺熱水流在織物中的熱濕傳遞性能研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的麻類織物熱濕傳遞性能研究與預(yù)測.pdf
- 外文翻譯---微孔膜防水透濕織物熱濕傳遞中織物表面凝結(jié)
- 企業(yè)負(fù)債外文文獻(xiàn)翻譯(節(jié)選)
- 外文翻譯---測定織物液態(tài)水動態(tài)傳遞的新測試方法的精度
- 玻璃纖維織物的熱傳遞性能研究.pdf
- 風(fēng)險(xiǎn)資本融資外文文獻(xiàn)翻譯(節(jié)選)
- 企業(yè)的納稅籌劃外文文獻(xiàn)翻譯(節(jié)選)
- 公共管理外文文獻(xiàn)翻譯(節(jié)選)
- 旅游動機(jī)外文文獻(xiàn)翻譯 (節(jié)選)
- 織物幾何結(jié)構(gòu)參數(shù)與織物熱傳遞性能的關(guān)系的量化研究.pdf
- 人力資源外包外文文獻(xiàn)翻譯(節(jié)選)
- 服用面料粘合后的力學(xué)與熱濕傳遞性能研究
評論
0/150
提交評論