2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  翻譯部分</b></p><p><b>  英文原文</b></p><p>  Gear mechanisms</p><p>  Gear mechanisms are used for transmitting motion and power from one shaft to an

2、other by means of the positive contact of successively engaging teeth. In about 2,600B.C., Chinese are known to have used a chariot incorporating a complex series of gears like those illustrated in Fig.2.7. Aristotle, in

3、 the fourth century B .C .wrote of gears as if they were commonplace. In the fifteenth century A.D., Leonardo da Vinci designed a multitude of devices incorporating many kinds of gears. In comparison w</p><p&g

4、t;  Gear mechanisms can be divided into planar gear mechanisms and spatial gear mechanisms. Planar gear mechanisms are used to transmit motion and spatial gear mechanisms. Planar gear mechanisms are used to transmit moti

5、on and power between parallel shafts ,and spatial gear mechanisms between nonparallel shafts.</p><p>  Types of gears</p><p>  Spur gears. The spur gear has a cylindrical pitch surface and has s

6、traight teeth parallel to its axis as shown in Fig. 2.8. They are used to transmit motion and power between parallel shafts. The tooth surfaces of spur gears contact on a straight line parallel to the axes of gears. This

7、 implies that tooth profiles go into and out of contact along the whole facewidth at the same time. This will therefore result in the sudden loading and sudden unloading on teeth as profiles go into and out of con</p&

8、gt;<p>  Helical gears. These gears have their tooth elements at an angle or helix to the axis of the gear(Fig.2.9). The tooth surfaces of two engaging helical gears inn planar gear mechanisms contact on a straigh

9、t line inclined to the axes of the gears. The length of the contact line changes gradually from zero to maximum and then from maximum to zero. The loading and unloading of the teeth become gradual and smooth. Helical gea

10、rs may be used to transmit motion and power between parallel shafts[Fig. 2.9</p><p>  Bevel gars. The teeth of a bevel gear are distributed on the frustum of a cone. The corresponding pitch cylinder in cylin

11、drical gears becomes pitch cone. The dimensions of teeth on different transverse planes are different. For convenience, parameters and dimensions at the large end are taken to be standard values. Bevel gears are used to

12、connect shafts which are not parallel to each other. Usually the shafts are 90 deg. to each other, but may be more or less than 90 deg. The two mating gears ma</p><p>  Worm and worm gears. Worm gear drives

13、are used to transmit motion and ower between non-intersecting and non-parallel shafts, usually crossing at a right angle, especially where it is desired to obtain high gear reduction in a limited space. Worms are a kind

14、of screw, usually right handed for convenience of cutting, or left handed it necessary. According to the enveloping type, worms can be divided into single and double enveloping. Worms are usually drivers to reduce the sp

15、eed. If not self-locki</p><p>  Racks. A rack is a gear with an infinite radius, or a gear with its perimeter stretched out into a straight line. It is used to change reciprocating motion to rotary motion or

16、 vice versa. A lathe rack and pinion is good example of this mechanism.</p><p>  Geometry of gear tooth</p><p>  The basic requirement of gear-tooth geometry is the provision of angular velocity

17、 rations that are exactly constant. Of course, manufacturing inaccuracies and tooth deflections well cause slight deviations in velocity ratio; but acceptable tooth profiles are based on theoretical curves that meet this

18、 criterion.</p><p>  The action of a pair of gear teeth satisfying this requirement is termed conjugate gear-tooth action, and is illustrated in Fig. 2.12. The basic law of conjugate gear-tooth action states

19、 that as the gears rotate, the common normal to the surfaces at the point of contact must always intersect the line of centers at the same point P called the pitch point.</p><p>  The law of conjugate gear-t

20、ooth can be satisfied by various tooth shapes, but the only one of current importance is the involute, or, more precisely, the involute of the circle. (Its last important competitor was the cycloidal shape, used in the g

21、ears of Model T Ford transmissions.) An involute (of the circle) is the curve generated by any point on a taut thread as it unwinds from a circle, called the base circle. The generation of two involutes is shown in Fig.

22、2.13. The dotted lines show how t</p><p>  Let us now develop a mating pair of involute gear teeth in three steps: friction drive, belt drive, and finally, involute gear-tooth drive. Figure 2.14 shows two pi

23、tch circles. Imagine that they represent two cylinders pressed together. If slippage does not occur, rotation of one cylinder (pitch circle) will cause rotation of the other at an angular velocity ratio inversely proport

24、ional to their diameters. In any pair of mating gears, the smaller of the two is called the pinion and the larger on</p><p>  In order to transmit more torque than is possible with friction drive alone, we n

25、ow add a belt drive running between pulleys representing the base circles, as in Fig 2.15. If the pinion is turned counterclockwise a few degrees, the belt will cause the gear to rotate in accordance with correct velocit

26、y ratio. In gear parlance, angle Φ is called the pressure angle. From similar triangles, the base circles have the same ratio as the pitch; thus, the velocity ratio provided by the friction and belt </p><p>

27、  In Fig. 2.16 the belt is cut at point c, and the two ends are used to generate involute profiles de and fg for the pinion and gear, respectively. It should now be clear why Φ is called the pressure angle: neglecting sl

28、iding friction, the force of one involute tooth pushing against the other is always at an angle equal to the pressure angle. A comparison of Fig. 2.16 and Fig.2.12 shows that the involute profiles do indeed satisfy the f

29、undamental law of conjugate gear-tooth action. Incidentally, t</p><p>  Nomenclature of spur gear </p><p>  The nomenclature of spur gear (Fig .2.17) is mostly applicable to all other type of ge

30、ars.</p><p>  The diameter of each of the original rolling cylinders of two mating gears is called the pitch diameter, and the cylinder’s sectional outline is called the pitch circle. The pitch circles are t

31、angent to each other at pitch point. The circle from which the involute is generated is called the base circle. The circle where the tops of the teeth lie is called the dedendum circle. Similarly, the circle where the ro

32、ots of the teeth lie is called the dedendum circle. Between the addendum circle and the</p><p>  The addendum is the radial distance from the reference circle to the addendum circle. The dedendum is the radi

33、al distance from the reference circle to the dedendum circle. Clearance is the difference between addendum and dedendum in mating gears. Clearance prevents binding caused by any possible eccentricity.</p><p>

34、;  The circular pitch p is the distance between corresponding side of neighboring teeth, measured along the reference circle. The base pitch is similar to the circular pitch is measured along the base circle instead of a

35、long the reference circle. It can easily be seen that the base radius equals the reference radius times the cosine of the pressure angle. Since, for a given angle, the ratio between any subtended arc and its radius is co

36、nstant, it is also true that the base pitch equals the circular</p><p>  The line of centers is a line passing through the centers of two mating gears. The center distance (measured along the line of centers

37、) equals the sum of the pitch radii of pinion and gear.</p><p>  Tooth thickness is the width of the tooth, measured along the reference circle, is also referred to as tooth thickness. Width of space is the

38、distance between facing side of adjacent teeth, measured along the reference circle. Tooth thickness plus width of space equals the circular pitch. Backlash is the width of space minus the tooth thickness. Face width mea

39、sures tooth width in an axial direction.</p><p>  The face of the tooth is the active surface of the tooth outside the pitch cylinder. The flank of the tooth is the active surface inside the pitch cylinder.

40、The fillet is the rounded corner at the base of the tooth. The working depth is the sum of the addendum of a gear and the addendum of its mating gear.</p><p>  In order to mate properly, gears running togeth

41、er must have: (a) the same module; (b) the same pressure angle; (c) the same addendum and dedendum. The last requirement is valid for standard gears only.</p><p>  Rolling-Contactbearings</p><p>

42、;  The rolling-contact bearing consists of niier and outer rings sepatated by a number of rolling elements in the form of balls ,which are held in separators or retainers, and roller bearings have mainly cyinndrical, con

43、ical , or barrelcage.The needles are retainde by integral flanges on the outer race,</p><p>  Bearigs with rolling contact have no skopstick effect,low statting torqeu and running friction,and unlike as in j

44、ournal bearings. The coefficient of friction varies little with load or opeed.Probably the outstanding of a rolling-contant beating over a sliding bearing is its low statting friction.The srdinary sliding bearing starts

45、from rest with practically metal to metal contact and has a high coefficient of friction as compared with that between rolling members.This teature is of particular im</p><p><b>  中文譯文</b></p&

46、gt;<p><b>  齒輪機構(gòu)</b></p><p>  齒輪機構(gòu)用來傳遞運動和動力,通過連續(xù)嚙合輪齒的正確接觸,從一根軸傳動到另一根軸。大約公元前2600年,中國人就能夠使用一系列戰(zhàn)車而聞名復(fù)雜的齒輪機構(gòu)而構(gòu)成的。公元前4世紀,亞里士多德寫的齒輪好象推動的是平凡的。在公元15世紀,Leonardo da Vinci 設(shè)計了能與許多種類的齒輪樞結(jié)合的大量裝置。與皮帶和鏈傳

47、動相比較,齒輪傳動裝置更加緊湊,能高速運行,也能夠被運用在要求準確定時的場合。齒輪傳動的傳動效率高達98%。另一方面,齒輪傳動機構(gòu)成本高,而且要求注意潤滑、清潔度、軸的對中等等,經(jīng)常用在提供準確箱體潤滑的閉式情況下。</p><p>  齒輪機構(gòu)能被分為平面齒輪機構(gòu)和空間齒輪機構(gòu)。平面齒輪機構(gòu)被用于傳遞運動和動力,而平行軸間的運動和動力空間齒輪機構(gòu)用于傳遞不平行軸間的運動和動力。</p><p

48、><b>  齒輪的分類:</b></p><p>  直齒輪 直齒輪有節(jié)輪表面和平行于輪的軸線的直齒輪,如圖2.8所示。它們用于傳遞兩平行軸間的運動和動力。兩配合的直接齒面嚙合在一條平行于其軸線的直線上,這意味著整個齒寬在同一時刻嚙合脫開,這樣在齒面上導(dǎo)致加載或卸載,當齒輪嚙合或脫開時,結(jié)果推動和噪聲就產(chǎn)生了。</p><p>  斜齒輪 這種齒輪的輪齒有

49、一位角度或與其軸線旋轉(zhuǎn)一定角度在平面齒輪機構(gòu)中相互嚙合,斜齒輪齒面相嚙合于一條傾斜于軸承的直線上,嚙合線的長度從0逐漸變化到最大再從最大變化到0,輪齒的加載和卸載變得平穩(wěn)均勻的運動和動力。人字齒輪相當于右旋齒輪和左旋齒輪并在一起,因為輪齒存在一定角度,斜齒輪產(chǎn)生相當大的軸間推力,人字齒輪通過相互抵消糾正了這一推力,允許其使用以推力軸承代替大推力軸承,或不同推力軸承,為了加工方便經(jīng)常沿著齒輪加工一個中心槽。</p><

50、p>  傘狀齒輪 傘狀齒輪是依據(jù)平截頭圓錐體分配的。圓柱齒輪的節(jié)圓柱成為分圓錐,齒輪的齒的橫剖面的尺寸是不同的。為了方便起見,錐齒輪的大頭端部的參數(shù)和尺寸作為標準值。習慣上錐齒輪相互作用的軸彼此不是平行的,通常兩軸線彼此成為90度,有時會比90度或多或少。兩個相互嚙合的齒輪僅僅為了變向或許有一樣的齒數(shù),又或者為了改變速度和方向而齒數(shù)不同。錐齒輪可能是直齒的也可能是螺旋形齒輪,以便我們有簡單的和螺旋形的齒輪。準雙曲面來自于雙曲面和

51、齒面的放置的表面。準雙曲面的齒輪屬于錐齒輪,但是兩軸不能橫斷,因為軸的材料,它的齒是曲線的,軸承可以位于各齒輪的各個側(cè)面。這種齒輪主要用在汽車后方末端是為了降低傳動軸并且用在汽車踏板處。</p><p>  蝸輪蝸桿齒輪 蝸輪傳動慣于傳遞動力和功率,它的軸既不相交也不平行,通常都是垂直的,尤其是要求獲得高的齒輪減速在一定的極限運算范圍內(nèi)。蝸桿是螺旋的,通常為了方便起見都是順時針方向的,如果需要的話也可是左旋方向

52、的。按照類型,可以是單螺旋的也可以是雙螺旋的,螺桿通常用來降低速度的,即使不自動鎖住,螺桿也能夠被驅(qū)動,所以稱作回力驅(qū)動機構(gòu),為了提高速度。下面是蝸輪蝸桿傳動裝置的兩個特點:(a)有很高的傳動速度(b)后者意思指和其它種類的齒輪相比中心有高的發(fā)熱性和電力傳輸效率。</p><p><b>  齒輪輪齒形狀</b></p><p>  輪齒幾何形狀的基本要求提供一個準確

53、不變的角速度,當然制造端差和輪齒變形將會在速度比上產(chǎn)生微小的偏差,然而可接受的齒形依據(jù)基于滿足這一判劇的理論曲線得出的。</p><p>  滿足這要求的一對配合齒輪的運動被稱為共軛齒輪傳動。如圖2.12所示,共軛齒輪傳動的基本定律論述為當齒輪轉(zhuǎn)動時,接觸點表面的公法線總是與中心線交于一點P,這點叫節(jié)點。</p><p>  共軛齒輪傳動原則能被各種齒形適應(yīng),目前最重要的一種是漸開線齒輪更

54、精確地說一個圓的漸開線(與它相近的重要的競爭者是擺線齒輪,它被用在福特汽車廠模式中)是條曲線,當從一個基圓滿開時,張緊線上每一點所形成的,兩條漸近線輪齒右外形相對應(yīng),相應(yīng)地,通過逆時針方向展開預(yù)先在右基圓上的線所產(chǎn)生的漸開線會形成輪齒左邊的外形,該點在每一點上,漸開線始終垂直于這條張緊線,因為漸開線理一條半徑不斷增加的圓弧,值得注意的是漸開線能夠在基圓外部產(chǎn)生并繪制,而不能在基圓里面。</p><p>  用以下

55、三個步驟研究一對相配合的齒輪:摩擦傳動,帶傳動和漸開線齒輪傳動。如圖2.14所示兩個節(jié)圓,假設(shè)他們是兩個壓在一起的圓柱,如果不發(fā)生打滑,一個圓柱的旋轉(zhuǎn)會引起另一個圓柱以一定角速度旋轉(zhuǎn),且這個速比反比于他們的直徑比,任何一對相嚙合的齒輪,兩個中較小的叫小齒輪,較大的叫大齒輪,用下標p和g分別指明。</p><p>  為了使傳動的扭矩比摩擦傳動產(chǎn)生的扭矩大,要附加一個帶有基圓的皮帶辦的皮帶驅(qū)動裝置。如圖2.15所示

56、,如圖,小齒輪逆時針旋轉(zhuǎn)一個小角度,皮帶將帶動大齒輪以相應(yīng)的速比旋轉(zhuǎn),在齒輪傳動中,角度Ψ為壓力角,人相似三角形得,把基圓具有相同速度的點稱為節(jié)點。</p><p>  如圖2.16中皮帶在c點被切斷,兩端分別形成了大齒輪和大齒輪上的漸開線齒形DE和FG,現(xiàn)在應(yīng)該清楚了為什么稱Ψ為壓力角,忽略滑動摩擦,一個齒輪作用于另一個齒輪的力總是形成一個與壓力角相同的角度。圖2.16和2.12的比較表明了漸開線齒輪強調(diào)滿足共

57、軛齒輪傳動的基本原則,附帶的漸開線齒輪只是幾何形狀滿足當齒輪旋轉(zhuǎn)時壓力角多產(chǎn)生這一原則,特別注意共軛漸開線齒輪傳動只能發(fā)生在兩基圓外面,從而摩擦傳動和皮帶傳動所提供的速度三角開相同。</p><p><b>  直齒輪的專用術(shù)語</b></p><p>  直齒輪的術(shù)語大部分可用于其它種類的齒輪。</p><p>  兩個相配合的齒輪的每個最初

58、的圓柱直徑被稱為中徑,并且圓柱體的橫截面外形被稱為節(jié)圓,兩個節(jié)圓相切于節(jié)點。產(chǎn)生漸開線的圓稱為基圓。位于齒的頂部的圓稱為齒頂圓,同樣的,位于齒的根部的圓稱為齒根圓,在齒頂圓和齒根圓之間的重要的圓稱為分度圓,分度圓的參數(shù)是標準化了的。用在齒輪分度圓的模數(shù)作為基本參數(shù),m=p/π,齒和齒輪的尺寸正比于模數(shù)m。</p><p>  齒頂是指由分度圓到齒頂圓的徑向距離,齒根是指由分度圓到齒根圓的徑向距離。相互嚙合的齒輪的

59、齒頂和齒根之間的間隙是有差異的,此間隙的存在是為了防止兩齒輪相互嚙合引起偏心。</p><p>  周節(jié)p是指相鄰齒的相應(yīng)邊之間的距離,它是沿分度圓測量的。類似于周節(jié)的基節(jié)沿分度圓測量代替分度圓。很容易看出來基圓半徑等于分度圓半徑乘上壓力角的余弦,因為對于給定的角度,任一相對的弧和半徑之比為常數(shù),它確實是基圓節(jié)距等于圓的節(jié)距乘上壓力角的余弦。壓力角是一確定的圓上法線和圓周速度相交點所在的角。在分度圓上的壓力角是標

60、準化的,它通常是20º(有時15º)。</p><p>  中心線是指通過相互嚙合齒輪的中心線的那條線。中心距(沿中心線測量)等于小齒輪和大齒輪節(jié)圓半徑的和。</p><p>  齒厚是指齒的寬度,是沿著分度圓測量的這段距離稱之為齒厚。齒間寬是沿著分度圓測量相鄰齒相對邊之間的距離,齒厚加上齒間寬等于節(jié)距,齒側(cè)是齒間寬減去齒厚的距離。齒面寬是沿軸線上測量出齒的寬度。<

61、;/p><p>  齒頂面是在節(jié)圓作用之外的齒的作用面,齒根面是在節(jié)圓之內(nèi)的作用面。齒根圓角是齒的根部處的圓角,工作深度是大齒輪齒頂高與其相嚙合的齒輪的齒頂高之和。</p><p>  為了正確嚙合,齒輪共同運轉(zhuǎn)的準則是:(a)具有相同的模數(shù);(b)有相同的壓力角;(c)有相同的齒頂高和相同的齒根高。最后的一條準則只適用于標準齒輪。</p><p><b> 

62、 滾動軸承</b></p><p>  滾動軸承包含了內(nèi)外尾圈,他由許多滾動元件分開,如滾珠,圓柱或圓錐滾子,或者滾針。滾珠軸承具有球狀滾動元件,他被保持在隔圈和保持架之間,棍子軸承主要由圓柱的,圓錐的,鼓形的磙子代替。球行的滾針軸承通常即設(shè)內(nèi)滾道也設(shè)保持架。滾針被外圈滾道上構(gòu)成整體的必須法點固定。</p><p>  具有滾動軸承的滾道軸,不具有滑動粘著效應(yīng),低啟動扭矩和速度

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論