版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 中文4300字,2600單詞,1.4萬英文字符</p><p> 出處:Leiknes T, Ødegaard H, Myklebust H. Removal of natural organic matter (NOM) in drinking water treatment by coagulation–microfiltration using metal membrane
2、s[J]. Journal of Membrane Science, 2004, 242(1–2):47-55.</p><p><b> 外文資料</b></p><p> Removal of natural organic matter (NOM) in drinking water treatment by coagulation–microfiltrat
3、ion using metal membranes</p><p> Torove Leiknes, Hallvard Ødegaard, Håvard Myklebust</p><p><b> Abstract</b></p><p> Drinking water sources in Norway are c
4、haracterized by high concentrations of natural organic matter (NOM), low pH, low alkalinity and low turbidity. The removal of NOM is therefore in many cases a general requirement in producing potable water. Drinking wate
5、r treatment plants are commonly designed with coagulation direct filtration or with NF spiral wound membrane processes. This study has investigated the feasibility and potential of using inorganic metal microfiltration m
6、embranes in a submerge</p><p> Keywords: Natural organic matter、Coagulation–microfiltration、 Metal membranes</p><p> 1. Introduction</p><p> About 90% of Norwegian drinking water
7、 supplies are from surface water sources, generally from lakes which typically have very low turbidity, alkalinity and hardness but high colour resulting from natural organic matter (NOM). One of the major problems of us
8、ing surface water sources in northern climates is high content of NOM and total organic carbon (TOC). Removal of NOM is required since coloured water is unattractive to consumers, results in colouring of clothes during w
9、ashing, can cause odor </p><p> The most common drinking water treatment plant designs in Norway are based on coagulation and direct filtration or nanofiltration (NF) membrane filtration processes [13]. Coa
10、gulation direct filtration plants (enhanced coagulation) are still the dominant treatment plant design option.</p><p> In the last 10–15 years membrane processes based on nanofiltration (NF) using spiral wo
11、uld module configurations have been success- fully used in Norway for removing NOM, and approximately 100 membrane plants are in operation today. The NF membrane plants are commonly designed to operate with a constant fl
12、ux of ~17L m?2 h?1 (LMH) at a trans membrane pressure (TMP) of 3–6 bar with a water recovery of ~70%. Some of the disadvantages of the NF spiral wound membrane systems used are a relatively lo</p><p> Memb
13、ranes in drinking water treatment are commonly based on spiral wound systems or cross-flow hollow fiber/tubular systems. These membrane processes are pres- sure driven membrane modules and mounted in different array desi
14、gns to optimize the process. Energy costs required to pressurize the membrane vessels and maintain high enough fluid cross-flow velocities often is a substantial component of these systems. Submerged membrane designs
15、offer a new approach both to the membrane module design </p><p> The objective of this study has been to investigate the feasibility and potential of inorganic MF metal membranes combined with coagulation f
16、or the treatment of drinking water from highly coloured surface water. A low pressure sub- merged membrane module configuration was chosen combined with the coagulation pre-treatment. The metal mem- branes have been supp
17、lied by Hitachi Metals Ltd., Japan.</p><p> 2. Experimental</p><p> 2.1. Production of raw water</p><p> All the experiments in this study were conducted with feed water having a
18、 colour of 50 mg/L Pt at pH 7 which is typical and representative for Norwegian raw water sources. The feed water to the membrane reactor was prepared using a NOM concentrate from a full-scale ion exchange treatment pla
19、nt by mixing the concentrate into tap water to make up the desired composition. Analysis of the reconstructed water showed that the feed water is representative of the natural water source. Reconstructed fee</p>&
20、lt;p> The coagulant used was a polyaluminium chloride (PAX-16), aqueous solution from Kemira Chemicals AS. Preliminary coagulation tests were first conducted in jar-tests to find the optimum pH and coagula
21、nt dosage necessary to remove the NOM. Dosages of 2, 3, 4 and 5 mg/L Al were tested at the optimal pH of 6.3 ± 0.1 to determine the colour removal. Results revealed that a specific aluminium dosage of 5 mg/L Al remo
22、ved 94% of true colour, 87% of UV-absorbing compounds, and 71% of DOC [9]. </p><p> Flocculation of the feed water was done using a pipe flocculator to maintain a rapid development of the micro-flocs. The p
23、ipe flocculator was designed with a hydraulic retention time (HRT) of 30 s and a hydraulic gradient G of 400 s?1 . The suspended solids concentration in the feed water after coagulation/flocculation with a coagulant dose
24、 of 5 mg/L Al was around 25 mg/L SS.</p><p> 2.2. Membrane module specification</p><p> The metal membranes provided by Hitachi Metal Ltd. are made as sheets. Each sheet is constructed by sin
25、tering metal powder in a support layer to form the membrane. The nominal pore size of the membrane has been characterized using both the bubble point method and a particle size exclusion analysis. These methods determine
26、d the membrane having a nominal pore size of 0.95 and 0.2 m, respectively. As such the membrane can be classified as an “open” mi crofiltration membrane, however, the particl</p><p> The membrane module
27、was designed and built as a plate and frame system using a sandwich construction where an aluminium frame was designed to hold two membrane sheets on each side with a support layer inside [15]. The frame measurements w
28、ere; height 430 mm, length 270 mm, width 10 mm, giving an effective membrane surface area of 0.1596 m2 per module. For the initial investigation in this study only one membrane module was immersed in the membrane react
29、or and the total membrane area used in t</p><p> 2.3. Experimental configuration</p><p> The membrane reactor is a rectangular tank (h = 80 cm, w = 27 cm, l = 30 cm) where the membrane module
30、was positioned approximately 15 cm above the bottom. An arrangement for sludge extraction and sludge sampling was made in the bottom of the tank. A sampling point was also installed in the middle of the tank to extract r
31、epresentative samples of the concentrate in the membrane reactor. The permeate was extracted using a low pressure vacuum pump and stored in a permeate reservoir for backwashing.</p><p> 2.4. Experimental an
32、alysis</p><p> The performance of the membrane module was deter- mined by measuring the transmembrane pressure (TMP) for constant flux operation. The development of TMP for different fluxes was measured con
33、tinuously using an online pres- sure transducer connected to a data acquisition system from National Instruments, Field Point (FP1000 with FP-AI-110 analogue input), in combination with the LabVIEW 6.1 data acquisition a
34、nd analysis program. The water temperature was also logged continuously with a temperatur</p><p> The water treatment efficiencies were measured by analyzing the removal of colour, TOC, UV254 -absorbance, t
35、urbidity and suspended solids. Samples from the feed water stream, the concentrate in the membrane reactor, and in the permeate stream were analyzed. Analysis protocol followed Norwegian Standards. True colour and UV-abs
36、orption were determined with a Hitachi U-3000 UV–vis spectrophotometer. Colour was determined by measuring the absorbance of a sample at 410 nm in a 5 cm cell. UV absorptio</p><p> 2.5. Membrane cleaning pr
37、ocedure</p><p> The membrane was cleaned between each experiment and the cleaning procedure consisted of combining phys- ical and chemical procedures. The membrane reactor was first drained and filled with
38、clean water. The direction of permeate was reversed to backwash the membrane combined with vigorous air scouring for a period. Mechanical cleaning of the membrane was first employed by gently brushing the membrane surfac
39、e with a soft brush before rinsing. The membrane module was then soaked in a hypochlorite </p><p> 3. Conclusions</p><p> The initial results show that a MF process with coagulation pre-treatm
40、ent using metal membranes has a great potential for drinking water treatment. Coagulation pre-treatment with polyaluminium chloride (PAX-16) of raw water with a colour of 50 mg/L Pt revealed that a specific aluminium dos
41、age of 5 mg/L Al removed >95% of true colour, ~87% of UV-absorbing compounds, and 65–75% of DOC. A consistent high permeate quality was achieved for all experiments irrespective of operating modes investigated.</p&
42、gt;<p> The performance of the membrane system was found to be best when operated in a semi sequencing batch reactor mode. Two operating cycles consisting of a production period followed by extraction of excess s
43、ludge and a short cleaning period combining backwashing of the membrane with permeate and vigorous air scouring was investigated. The cycles applied consisted of a 10 min cycle (9.5 min production, 0.5 min cleaning) and
44、a 30 min cycle (29 min production, 1 min cleaning). Fluxes in the range of 2</p><p> Future work will include investigating alternative operating cycles, a better understanding of the effect of the cleaning
45、 cycles on the system performance, improving the membrane module design, designing a more efficient membrane reactor, and optimizing modes of operation to minimize membrane fouling.</p><p> Acknowledgements
46、</p><p> The authors would like to thank Hitachi Metals Ltd., Japan, for the support and supplying the metal membrane sheets, and Kemira Chemicals, Norway, for supplying the coagulants.</p><p>
47、<b> 中文譯文</b></p><p> 飲用水處理通過用金屬膜制成的凝固—微濾來去除天然有機物質(zhì)</p><p> Torove Leiknes, Hallvard Ødegaard, Havard Myklebust</p><p> 挪威科技大學,水力和環(huán)境工程系</p><p> 說明:A
48、ndersensvel 5,N-7491 特隆赫姆,挪威</p><p><b> 摘要:</b></p><p> 在挪威的飲用水源的特點是天然有機物質(zhì)的濃度高,PH值低,堿度低,濁度低。因此在許多情況下用去除天然有機物質(zhì)的一般設(shè)備用來生產(chǎn)飲用水?!★嬘盟幚砉S一般是設(shè)計凝固系統(tǒng)直接過濾或與納濾膜纏繞膜過程。本研究調(diào)查顯示,在飲用水生產(chǎn)的配置有凝固系統(tǒng)的預處理
49、中使用無機金屬微濾膜的可行性和潛力。對操作模式和條件的變化進行了測試,從無間歇的操作到使用空氣對膜進行的周期式?jīng)_洗、反沖洗和污垢控制的半序列間歇式操作。大約180LMH的流量在膜壓力低于0.3bar下生產(chǎn)周期超過了50小時。處理效率一般顯示,可去除95%以上的色度、85%的紫外線、0.2NTU以下的濁度和在滲透中的可檢測的懸浮體。最初的結(jié)果表明,三聚氰胺-甲醛樹脂金屬薄膜是一個在處理飲用水的凝固/直流過濾中令人關(guān)注的砂濾替代物。<
50、/p><p> 關(guān)鍵詞:天然有機物質(zhì)、凝固—微濾 、金屬膜</p><p><b> 1、簡介</b></p><p> 大約90%的挪威飲用水的供給是由地表水源提供,一般是由擁有低濁、低堿度、低硬度且由于天然有機物引起的高色度的湖水供給。在北方的氣候下利用地表水源的其中一個主要問題是天然有機物和總有機碳的高濃度。必須去除天然有機物是因為有色
51、水吸引不了消費者,它導致衣服在洗滌的時候被染色,產(chǎn)生氣味和口味,增加腐蝕和生物膜的變薄,是配電網(wǎng)絡(luò)的形成一種前兆時(DBP)消毒副產(chǎn)物水消毒。含天然有機物質(zhì)的濃聚物的飲用水的氯化,導致的鹵代化合物產(chǎn)生,已成為人們主要關(guān)心的問題。因為在70年代早期,人們發(fā)現(xiàn)氯化副產(chǎn)物是致癌的。在挪威,飲用水水源通常可以描述為高色度、低pH值和低堿度,作為典型值在表格中給出。因此,去除天然有機物質(zhì)是飲用水生產(chǎn)里的一個重要的處理手段,在那里,典型濃聚物由色度
52、30-80mg/L Pt減小到了少于10mg/L Pt。</p><p> 在挪威,最常見的飲用水處理廠的設(shè)計是基于凝固和直接過濾或納濾膜過濾過程(NF)[13]?;炷^濾工藝(強化混凝)仍然是主要的水處理工藝。</p><p> 在過去的10至15年,基于螺旋納濾膜(NF)基礎(chǔ)上的離子交換膜法,利用模塊配置已成功地用于挪威飲用水去除天然有機物,而大約有100種膜工藝今天仍在運用。納濾
53、膜工藝一般在3-6bar的膜過濾壓差(TMP)、 21~ 17Lm的恒定流量 (LMH)下運作,可使水的恢復達到70%。圖2舉例說明了螺旋型的納濾膜的一種典型的工藝設(shè)計和流程方案。螺旋型的納濾膜系統(tǒng)過去有一些缺點,即相對較低的恢復,操作壓力帶來的高能源消耗,天然有機物污染,次微米微粒導致需要清潔程序和按清潔規(guī)程[13、14]定期維護。在最近的關(guān)于不同處理工藝形式經(jīng)驗的調(diào)查,使用膜處理水的經(jīng)營者和所有者通常對膜技術(shù)的使用非常滿意。然而,該
54、調(diào)查也表示有興趣的選擇膜處理裝置的設(shè)計,更多的能量這將有助于通過高效污染控制減少必要的清洗頻率。兩種方法可以直接實現(xiàn):在納濾之前使用各種各樣的原水預處理或者采用納濾膜,不同類型的膜組件和操作選項。研究使用微濾(MF)、超濾(UF)膜以及膜組件設(shè)計(替代中空纖維橫流模塊和淹沒模塊)結(jié)合凝預處理,減少和控制污染已經(jīng)被報道過了[1]4 - 7,9 - 11]。當應(yīng)用超濾(UF)、 微濾(MF)時,混凝預處理</p><p&
55、gt; 膜在飲用水處理中通常基于螺旋型系統(tǒng)或橫流中空的纖維/管狀系統(tǒng)。這些膜分離過程處于膜組件的驅(qū)動和裝在不同的陣列設(shè)計優(yōu)化過程的壓力下。能源成本的要求,試圖對膜血管并維持足夠高的液體橫流速度往往是這些系統(tǒng)的基本內(nèi)容。能源成本要求對膜血管增加并維持高足夠的液體橫流速度往往是這些系統(tǒng)的基本內(nèi)容。水膜設(shè)計提供了一種全新的一體式膜設(shè)計方法應(yīng)對膜組件的設(shè)計和低壓工況,可以有利于總能量的需求。一體式膜工藝設(shè)計結(jié)合混凝預處理被這一研究選為是一種直
56、接去除天然有機物的替代處理過程。由于這種膜有著化學和物理的強健性,無機金屬薄膜也被選中,考慮選擇的清洗污垢控制策略相比,與什么是可行的聚合物薄膜相比。</p><p> 本研究的目的是探討一種可行性,即無機微濾金屬膜結(jié)合凝固處理來自高色度的地表水的飲用水的潛力。低壓一體式膜的模塊化配置被選中與混凝預處理環(huán)節(jié)結(jié)合。金屬膜由日本的日立五金股份有限公司提供。 </p><p><b>
57、; 2、實驗</b></p><p><b> 2.1、生產(chǎn)的原水</b></p><p> 本研究中所有的實驗都在采用典型的、代表挪威原水,色度為50mg / L Pt ,pH= 7的給水。給水水膜反應(yīng)器中已經(jīng)準備好使用大規(guī)模的集中了離子交換處理裝置的天然有機物濃縮液,通過把濃縮液混合進進自來水來組成理想的組分。分析表明,再生水顯示出給水代表著自然
58、水源。該實驗中再生給水被選作維持同樣的初始條件進行的所有實驗,這樣所有的性能在不同操作條件下就可以進行評估和比較。鹽酸(HCl)被用于控制和調(diào)整pH值,以確保在凝固這一階段最佳pH為6.3±0.2。色度為50mg / L Pt的再生水擁有6.1 ± 0.25mg/L濃縮碳和31.1 ± 1.1m的紫外線254吸收率。</p><p> 使用的混凝劑是一種聚合氯化物(PAX-16),
59、從Kemira水溶液化學材料為。初步試驗首先進行了混凝震動測試,找到移除NOM的最適酸堿度、混凝投藥量。在理想的酸堿值pH=6.3±0.1下,分別對劑量為2、3、4和5mg / L的鋁進行了測試,至確定顏色去除。研究結(jié)果顯示,特定用量5mg / L的鋁能夠去除94%的真色,87%的UV吸收化合物,以及71%的DOC[9]。4-5mg / L的鋁并不使顏色去除量增加,然而,是使DOC的去除增多,同時該顆粒的電動電勢形成。5mg
60、/ L劑量的鋁因此被選擇作為首選混凝劑投加量。隨劑量的增加,該顆粒的電動電勢形成從-22mV增加到+ 5mV。該顆粒的電動電勢的增長與導致電動電勢的消極值的低劑量相比,也被認為是有益。然而,在膜反應(yīng)器中,該顆粒的平均電動電勢的周圍測定值-7.75±4.19mV。低值的發(fā)現(xiàn)可能是由于在膜反應(yīng)器中條件的不同例如污泥濃度、液壓和絮凝條件,然而,其測量值接近一個有利于聚集體形成的中性的電荷。因此,所有的實驗進行了在酸堿度約為6.3
61、177;0.2的膜反應(yīng)器中加混凝劑劑量為5mg/ L的鋁的給水處理。</p><p> 使用管道絮凝器維持一個飛速發(fā)展的微絮體完成了給水的絮凝。管道絮凝器設(shè)計水力停留時間(HRT)為30秒,水力梯度400。給水經(jīng)過混凝劑用量為5mg/L的鋁的混合/絮凝之后的懸浮物濃度在25mg/L SS左右。</p><p> 2.2、膜組件規(guī)范</p><p> 膜組件的
62、材料是由日立金屬有限公司提供的,并由金屬膜制成了薄板。每一個薄板都是由一個支撐層燒結(jié)金屬粉末形成的膜構(gòu)成的。通過使用泡點法和粒子篩選法來分析膜標孔的特點。這些方法確定的膜的標孔為0.95米和0.2米。這種膜可作為一個“開放"的微量過濾膜進行分類,其中,粒度為0.2米孔徑最有可能代表膜的特點。</p><p> 膜組件的設(shè)計以及板框采用夾層結(jié)構(gòu)凡鋁框,目的是保證每一個內(nèi)部[15]支持層膜板邊由兩個系統(tǒng)建
63、成。據(jù)幀測量,高度為430公厘,長度為270毫米,寬度為10毫米,每個模塊提供一個表面積為0.1596平方米的有效的膜。研究初步調(diào)查,這條唯一的膜組件在膜反應(yīng)器中的膜面積和總使用面積為0.1596平方米。一個膜反應(yīng)器和膜組件模塊的原理圖如圖3所示。 </p><p><b> 2.3、實驗配置</b></p><p> 該膜反應(yīng)器是一個長方形的容器(高= 80厘米
64、,寬= 27厘米,長= 30厘米),膜組件在距離底部位置約為15厘米以上的地方。提取污泥和污泥的采樣均安排在容器底。一個采樣點也安裝在容器中,他提取膜反應(yīng)器中集中的代表樣品。提取滲透液使用低真空壓力泵,并將滲透油儲存為反沖洗。一個真空泵能承受的最大值為0.5pa的三甲氧芐氨嘧啶,徹底清洗其中一個膜組件是必要的條件。安裝一種粗泡曝氣鼓風機和通風設(shè)備,控制空氣污染和膜的沖刷清洗。</p><p><b>
65、 2.4、實驗分析</b></p><p> 實驗分析了膜模塊的性能,目的是防止開采過程中由于跨膜壓力不斷變化對操作的影響。三甲氧芐氨嘧啶的發(fā)展是將傳感器連接到一個計算機輔助軟件,由于助熔劑的不同,需通過在線連續(xù)測量壓力。FieldPoint軟件可進行系統(tǒng)數(shù)據(jù)采集(FP1000與FP -的AI - 110模擬輸入),并結(jié)合LabVIEW 6.1的數(shù)據(jù)采集和分析程序。溫度傳感器會不斷地記錄水溫。流速與
66、流量的測量通過手動各自線轉(zhuǎn)子來統(tǒng)計。關(guān)于膜,膜的性能污染率通過計算滲透率來確定下降率,用跨膜壓力(長2M,寬2M,壓強1pa)除以歸通量來表達。通過消去顏色的分析進行水處理效率的測量,經(jīng)TOC分析儀顯示所吸收的UV254,渾濁度以及去除的懸浮物。從水流中采集的樣本,在膜反應(yīng)器集中,并對滲透流樣本進行分析。其次分析協(xié)議采用挪威標準。真彩色和UV的吸收測定了日立的U - 3000分光光度計。顏色是通過測量5厘米的細胞樣品在410 nm處的吸
67、光度。UV的吸收,是用1厘米的石英細胞定義在254納米中。通過催化濕式氧化(分析儀阿波羅9000)來分解或進行有機碳(DOC)的測定。原水樣品是通過一個0.45米的賽多利斯硝酸鹽來分析過濾去除的顆粒物。用</p><p><b> 2.5、膜清洗程序</b></p><p> 通過膜清洗實驗和彼此間的清潔程序相結(jié)合的物理、化學程序進行膜清洗過程。該膜反應(yīng)器的第一排
68、干,用干凈的水填充。滲透方向相反的反沖洗膜以空氣與活力的聯(lián)合。膜清洗機械首次使用,需輕輕刷洗并在沖洗前軟刷膜的表面。用次氯酸鈉溶液浸泡膜組件一兩個小時(200毫克/升),以去除可能有吸附在金屬表面的污垢,接著用弱檸檬酸溶液浸泡,以消除所有的無機污垢和有機物。通過對干凈的水通量測量來確定清理檢查安泰程序的效率,重復對比較清潔的水通量測試,得出初步評估結(jié)果。</p><p><b> 3、結(jié)論</b
69、></p><p> 結(jié)論初步結(jié)果表明,與混凝物預處理過程中使用金屬膜中頻有很大的電位器用于飲用水處理?;炷坝镁酆下然X(百富- 16)50毫克/ L的原水為處理鉑,5毫克/ L的鋁取消“95%的真彩色,?87%的紫外線,吸收的化合物,以及65-75%的DOC。不論以何種實驗操作模式來研究,質(zhì)量均連續(xù)達到了高滲透。通過密封操作和反沖洗以及空氣沖刷的變化,最初的研究表明,膜污染是可逆的,并且形成了主體系統(tǒng)
70、。這個主體系統(tǒng)層很容易被再次提出,膜與膜清洗廣泛的性能會恢復到初始狀態(tài)。膜系統(tǒng)性能最好的時候是在一個半序批式反應(yīng)器模式下運行。提取剩余污泥和空氣大力沖刷膜,兩項依次循環(huán)操作組成了一個生產(chǎn)周期,對反沖洗后荒漠化問題進行了研究。應(yīng)用的周期包括一個10分鐘周期(9.5分鐘生產(chǎn),0.5分鐘清洗)和一個30分鐘的周期(29分鐘生產(chǎn),1分鐘清潔)。低通熱量在200LMH和0.1?0.4paTMP范圍內(nèi)發(fā)展總是很容易實現(xiàn)。與30分鐘以上較低的污染相比
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 飲用水處理中強化混凝去除有機物的試驗研究.pdf
- 飲用水源中天然有機物特性表征及有機物強化去除工藝研究.pdf
- 混凝-微濾飲用水處理工藝的中試研究.pdf
- 飲用水中天然有機物和擬除蟲菊酯農(nóng)藥去除研究.pdf
- 膜吸附劑去除飲用水重金屬研究.pdf
- 不同濾料去除飲用水中三氮物質(zhì)的中試研究.pdf
- MIEX-COA工藝去除飲用水中有機物的研究.pdf
- 混凝-微濾工藝去除水中天然有機物的膜污染試驗研究.pdf
- 飲用水常規(guī)處理工藝和活性炭吸附對有機物去除的研究.pdf
- 生活飲用水處理技術(shù)的發(fā)展
- 畢業(yè)設(shè)計(論文)沿黃城市飲用水有機物去除工藝研究
- 藻源有機物飲用水處理過程中AOC變化規(guī)律研究.pdf
- PMIA復合膜的制備及其去除飲用水中微有機污染物的研究.pdf
- 生活飲用水處理工藝探析
- 混凝-微濾膜工藝飲用水處理中試研究.pdf
- 納濾去除飲用水中有機物及類炭疽桿菌的研究doc
- 生物膜電極法處理飲用水源水中氨氮和有機物的研究.pdf
- 改性天然沸石去除飲用水中的砷和氟.pdf
- 膜組合工藝在飲用水處理中的應(yīng)用研究.pdf
- 混凝—微濾工藝制備飲用水的試驗研究.pdf
評論
0/150
提交評論