框架結(jié)構(gòu)設(shè)計(jì)外文翻譯_第1頁(yè)
已閱讀1頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  南 京 理 工 大 學(xué) 紫 金 學(xué) 院</p><p>  畢業(yè)設(shè)計(jì)(論文)外文資料翻譯</p><p>  系: 機(jī)械工程系 </p><p>  專 業(yè): 土木工程 </p><p>  姓 名:

2、 袁洲 </p><p>  學(xué) 號(hào): 050105140 </p><p>  外文出處: Design of prestressed </p><p>  concrete structures </p>

3、<p>  附 件: 1.外文資料翻譯譯文;2.外文原文。 </p><p>  注:請(qǐng)將該封面與附件裝訂成冊(cè)。</p><p>  附件1:外文資料翻譯譯文</p><p><b>  8-2 簡(jiǎn)支梁布局</b></p><p>  一個(gè)簡(jiǎn)單的預(yù)應(yīng)力混凝土梁由兩個(gè)危險(xiǎn)截面控制:最大彎矩截面和端截面。

4、這兩部分設(shè)計(jì)好之后,中間截面一定要單獨(dú)檢查,必要時(shí)其他部位也要單獨(dú)調(diào)查。最大彎矩截面在以下兩種荷載階段為控制情況,即傳遞時(shí)梁受最小彎矩MG的初始階段和最大設(shè)計(jì)彎矩MT時(shí)的工作荷載階段。而端截面則由抗剪強(qiáng)度、支承墊板、錨頭間距和千斤頂凈空所需要的面積來(lái)決定。所有的中間截面是由一個(gè)或多個(gè)上述要求,根它們與上述兩種危險(xiǎn)截面的距離來(lái)控制。對(duì)于后張構(gòu)件的一種常見(jiàn)的布置方式是在最大彎矩截面采用諸如I形或T形的截面,而在接近梁端處逐漸過(guò)渡到簡(jiǎn)單的矩形

5、截面。這就是人們通常所說(shuō)的后張構(gòu)件的端塊。對(duì)于用長(zhǎng)線法生產(chǎn)的先張構(gòu)件,為了便于生產(chǎn),全部只用一種等截面,其截面形狀則可以為I形、雙T形或空心的。在第5 、 6 和7章節(jié)中已經(jīng)闡明了個(gè)別截面的設(shè)計(jì),下面論述簡(jiǎn)支梁鋼索的總布置。</p><p>  梁的布置可以用變化混凝土和鋼筋的辦法來(lái)調(diào)整?;炷恋慕孛嬖诟叨取挾?、形狀和梁底面或者頂面的曲率方面都可以有變化。而鋼筋只在面積方面有所變化,不過(guò)在相對(duì)于混凝土重心軸線的

6、位置方面卻多半可以有變化。通過(guò)調(diào)整這些變化因素,布置方案可能有許多組合,以適應(yīng)不同的荷載情況。這一點(diǎn)是與鋼筋混凝土梁是完全不同的,在鋼筋混凝土梁的通常布置中,不是一個(gè)統(tǒng)一的矩形截面便是一個(gè)統(tǒng)一的T形,而鋼筋的位置總是布置得盡量靠底面纖維。</p><p>  首先考慮先張梁,如圖 8-7,這里最好采用直線鋼索,因?yàn)樗鼈冊(cè)趦蓚€(gè)臺(tái)座之間加力比較容易。我們先從圖(a)的等截面直梁的直線鋼索開(kāi)始討論。這樣的布置都很簡(jiǎn)單,

7、但這樣一來(lái),就不是很經(jīng)濟(jì)的設(shè)計(jì)了,因?yàn)榭缰泻土憾说囊髸?huì)產(chǎn)生沖突。通常發(fā)生在跨度中央的最大彎矩截面中的鋼索,最好盡量放低,以便盡可能提供最大力臂而提供最大的內(nèi)部抵制力矩。當(dāng)跨度中央的梁自重彎矩MG相當(dāng)大時(shí),就可以把c.g.s布置在截面核心范圍以下很遠(yuǎn)的地方,而不致在傳遞時(shí)在頂部纖維中引起拉應(yīng)力。然而對(duì)于梁端截面卻有一套完全不同的要求。由于在梁端沒(méi)有外力矩,因?yàn)樵谧詈蟮臅r(shí)刻,安排鋼索要以c.g.s與 c.g.c在結(jié)束區(qū)段一致,如此同樣地獲

8、得克服壓力分配的方法。無(wú)論如何,如果張應(yīng)力在最后不能承受,放置 c.g.s. 是必需緊排的,而且緊排的不能太遠(yuǎn),避免張拉應(yīng)力超過(guò)應(yīng)力允許值。</p><p>  圖8-7 布局預(yù)應(yīng)力梁</p><p>  同時(shí)滿足跨中和梁端兩種截面的布局需求這是不可能的,舉例來(lái)說(shuō),如( a ),如果 c.g.s.全都放在核心下界處,那么這對(duì)梁端截面來(lái)說(shuō),已經(jīng)是容許的最低點(diǎn),面對(duì)跨中截面來(lái)說(shuō),則還沒(méi)有達(dá)到

9、足夠大的力矩臂來(lái)提供令人滿意的內(nèi)部抵抗力矩。如果 c.g.s.緊排在下面位置,在中跨處的抵抗力就可以達(dá)到要求了,但是最后壓力分配將不太容易,此外,過(guò)大的反撓度也可能導(dǎo)致這樣的布局,由于預(yù)應(yīng)力在整個(gè)光纖內(nèi)受到負(fù)面彎曲。盡管有這些不對(duì)的地方,但這往往是最簡(jiǎn)單的布局,特別是一些短跨。</p><p>  對(duì)于直線鋼索等截面的混凝土梁,有可能獲得比(a)更理想的布置,只要變化一下梁的底面形狀,如在圖8-7里的( b )和

10、( c ) ; (b)中的底面是折線的,而( c )中則是弧線的。對(duì)于這兩種布置,對(duì)c.g.s.在跨中可以盡量放在低的位置,而在兩端可以保持c.g.s不變,如果梁的底面可以任意改動(dòng),這樣就有可能獲得最適合于荷載情況的曲線。舉例來(lái)說(shuō),一個(gè)拋物線底面最適合于勻布荷載。雖然這兩個(gè)布置有效地抵抗應(yīng)力分布,但是有三個(gè)缺點(diǎn),首先,在(a)處模板要更加復(fù)雜;第二,由于建筑或功能的原因,弧形或折線形的底面往往不切合實(shí)用;第三,它們?cè)陂L(zhǎng)線法預(yù)應(yīng)力臺(tái)座上都

11、很難生產(chǎn)出來(lái)。</p><p>  只要有可能變化混凝土梁的頂面,那么就可以有利地采用圖 8-7( d ),( e )那樣的布置方案。這樣在最需要高度的跨中具有良好的高度,而且在梁端截面可以得到一個(gè)共軸的或者近乎共軸的預(yù)加應(yīng)力。因?yàn)楦叨仍诹憾私孛鏈p少,所以一定要經(jīng)常檢查。例如( d ),也應(yīng)該注意危險(xiǎn)截面可能不在跨中,寧可布置在一些遠(yuǎn)離它的點(diǎn),在最大值附近高度略微有點(diǎn)降低。梁( d )在模板方面要比( e )項(xiàng)中

12、具有弧線形頂面的梁簡(jiǎn)單。</p><p>  美國(guó)的大多數(shù)先張預(yù)制工廠沿張拉臺(tái)座埋設(shè)有錨頭,以便于先張法梁的力筋也可以折曲,如圖8-7的(f)、(g)。倘若梁必須是等截面的直梁,而且倘若梁自重彎矩MG的確大得有必要作這種額外花費(fèi)的彎曲的話,那么這樣做也可能是經(jīng)濟(jì)的。不過(guò)必須設(shè)法減少力筋的彎曲所引起的預(yù)應(yīng)力的摩擦損失。例如,在末端就先張拉,然后再受拉彎曲。</p><p>  顯然,從上述討

13、論中,許多布置都是可能的。只有一些基本的形式在這方面介紹了,變化的組合需要自行設(shè)計(jì)。正確的布置結(jié)構(gòu)將取決于當(dāng)?shù)氐臈l件和實(shí)際需求以及理論上的思考。</p><p>  圖8-8 使鋼筋后張的梁的布局</p><p>  但是,對(duì)于適筋梁,像圖8-8,沒(méi)有必要保持彎矩包絡(luò)圖是直線,因?yàn)樯晕澢蚧【€形的力筋同直線力筋一樣可以輕松張拉。因此,在等截面直梁中,力筋往往彎曲,例如在圖8-8.(a)

14、處。把力筋彎曲將會(huì)允許 c.g.s.在梁兩端和跨中以及其他各點(diǎn)的截面中都獲得有利的位置。</p><p>  只要不要求用直線的底面,那么就常常可以采用如圖 8-8( b )所示的把弧線形或折曲的力筋配合弧線或折線底面一同使用。這樣可以使力筋彎曲得小些,從而降低摩擦力。弧線的或折曲的鋼索也可以配合變高度梁使用。如在( c )處。有時(shí)發(fā)現(xiàn)同時(shí)使用直線的和弧線的力筋頗為有利,如圖( d )所示。</p>

15、<p>  沿長(zhǎng)度方向改變鋼筋面積的布置方案偶爾也是可取的。這樣的梁必須經(jīng)過(guò)專門設(shè)計(jì),而它所必須用到的細(xì)節(jié)構(gòu)造卻可能抵消掉所節(jié)省的鋼材。在圖8-8(e)中,一些鋼索被向上彎曲而且布置在最高的邊緣。在(f) 處,一些鋼索在底部的邊緣中被省略。這些布置方案雖然可以節(jié)省一些鋼材,不過(guò)除了像用在承受重荷載的很長(zhǎng)跨度的梁上那樣能節(jié)約大量鋼材的情況之外,可能不值得的采用。</p><p>  8-3 鋼索的縱斷面

16、</p><p>  我們?cè)谏弦还?jié)已經(jīng)討論了,簡(jiǎn)支梁的布置是受到最大彎矩和梁端兩種截面控制,因而在這兩種截面設(shè)計(jì)哈之后,介于其間的其他截面就往往可以通過(guò)觀察來(lái)確定。然而,有時(shí)沿梁長(zhǎng)度方向的中間點(diǎn)上也可能出現(xiàn)危險(xiǎn)截面,乃至在許多情況中宜于為鋼索確定容許的并且理想的縱斷面。要做到這一點(diǎn),c.g.s.在限制區(qū)的位置是首先需要確定的,然后再布置鋼索,使其重心保持在限定區(qū)之內(nèi)。</p><p>  

17、描述的方法在這里是為簡(jiǎn)支梁,但它也可作為解決更為復(fù)雜布局的方法,如懸臂梁和連續(xù)跨越梁,檢查電纜的位置是不容易確定的。方法是圖解式的;c.g.s.在給定的限制地域里面,生產(chǎn)時(shí)一定要通過(guò)井然有序且沒(méi)有張應(yīng)力的過(guò)程。壓應(yīng)力混凝土中沒(méi)有檢查這個(gè)的方法。據(jù)推測(cè),布局的具體方法和地區(qū)的預(yù)應(yīng)力鋼已經(jīng)確定時(shí)只有形象的c.g.s.的位置。</p><p>  在談到圖8-9時(shí),在確定具體的布局部分時(shí),我們開(kāi)始計(jì)算他們克恩點(diǎn),從而產(chǎn)

18、生兩個(gè)克恩線,一個(gè)頂部和底部的一個(gè),如( c )處。請(qǐng)注意,對(duì)于變截面,這些克恩線將被彎曲,但為方便起見(jiàn),他們將表現(xiàn)出連續(xù)的數(shù)字以代表梁截面。</p><p>  因?yàn)楣饫|裝載顯示在(a)處, 在( b )處最低和最高的時(shí)刻梁負(fù)荷載和總的工作負(fù)荷分別被標(biāo)記為MG和MT。為了根據(jù)工作負(fù)荷,壓力中心的C線,將不屬于上述頂端克恩線,很明顯,c.g.s.必須位于下方頂端克恩處。</p><p> 

19、 a1=MT/F (8-1)</p><p>  圖8-9 c. g. s.的限制區(qū)域</p><p>  如果c.g.s.屬于上述上限在任何地點(diǎn),然后在C線相應(yīng)的MT和預(yù)應(yīng)力F載上述頂端克恩線處,底部光纜將造成嚴(yán)重受壓。</p><p>  同樣,為了使C線不低于底部克恩線,c.g.s.線不得低于定位底部克恩線的

20、位置。如果c.g.s.定位高于下限,這里看到的C線將高于底部克恩線,這樣就不會(huì)產(chǎn)生頂端光纖梁下的負(fù)荷和初始預(yù)應(yīng)力。</p><p>  因此,它可以清楚地看到限制區(qū)c.g.s.給出了陰影面積圖, 如圖8-9(c),為了將根據(jù)梁負(fù)荷下的工作負(fù)荷不存在。然而,個(gè)別的腱可能被放在任何的位置,如此就當(dāng)做 c.g.s. 保持在所有的電纜中的限制地域里面。</p><p>  位置和寬度的限制區(qū)往往說(shuō)

21、明是否是適當(dāng)和經(jīng)濟(jì)的設(shè)計(jì),如圖8-10。如果上限的一些部分外面或者在底部的光纖附近落下,在(a)處, 預(yù)應(yīng)力F或光纜的深度在那一部分應(yīng)該被增加。另一方面,如果它屬于上述底部纖維,在( b )中,預(yù)應(yīng)力梁高度是可以降低的。如果穿越下限,在( C )中,這意味著,如果是可以做到?jīng)]有c.g.s.提供的位置,然后在F或預(yù)應(yīng)力梁深入時(shí)必須增加,以降低下限。另一方面,將討論后,該例題中顯示圖8-10(c)可能是非常令人滿意的是,允許布局在拉應(yīng)力混凝

22、土。</p><p>  圖8-10 限制c.g.s.的不利位置</p><p><b>  附件2:外文原文</b></p><p>  8-2, Simple Beam Layout</p><p>  The layout of a simple prestressed-concrete beam is cont

23、rolled by two critical sections: the maximum moment and the end sections. After these sections are designed, intermediate ones can often be determined by inspection but should be separately investigated when necessary. T

24、he maximum moment section is controlled by two loading stages, the initial stage at transfer with minimum moment MG acting on the beam and the working-load stage with maximum design moment MT. The end sections are contro

25、lled</p><p>  The layout of a beam can be adjusted by varying both the concrete and the steel. The section of concrete can be varied as to its height, width, shape, and the curvature of its soffit or extrado

26、s. The steel can be varied occasionally in its area but mostly in its position relative to the centroidal axis of concrete. By adjusting these variables, many combinations of layout are possible to suit different loading

27、 conditions. This is quite different from the design of reinforced-concrete beams, wher</p><p>  Consider first the pretensioned beams, Fig. 8-7.Here straight cables are preferred, since they can be more eas

28、ily tensioned between two abutments. Let us start with a straight cable in a straight beam of uniform section, (a).This is simple as far as form and workmanship are concened, But such a section cannot often be economical

29、ly designed, because of the conflicting requirements of the midspan and end sections. At the maximum moment section generally occurring at midspan, it is best to place th</p><p>  It is not possible to meet

30、the conflicting requirements of both the midspan and the end sections by a layout such as ( a ). For example, if the c. g. s. is located all along the lower kern point, which is the lowest point permitted by the end sect

31、ion, a satisfactory lever arm is not yet attained for the internal resisting moment at midspan. If the c. g. s. is located below the kern, a bigger lever arm is obtained for resisting the moment at midspan, but stress di

32、stribution will be more unfavorab</p><p>  Fig 8-7. Layouts for pretensioned beams.</p><p>  For a uniform concrete section and a straight cable, it is possible to get a more desirable layout th

33、an ( a ) by simple varying the soffit of the beam, as in Fig. 8-7( b ) and ( c ); ( b ) has a bent soffit, while ( c ) has a curved one. For both layouts, the c. g. s. at midspan can be depressed as low as desired, while

34、 that at the ends can be kept near the c. g. c. If the soffit can be varied at will, it is possible to obtain a curvature that will best fit the given loading condition; for examp</p><p>  When it is possibl

35、e to vary the extrados of concrete, a layout like Fig. 8-7( d ) or ( e ) can be advantageously employed. These will give a favorable height at midspan, where it is most needed, and yet yield a concentric or nearly concen

36、tric prestress at end section. Since the depth is reduced for the end sections, they must be checked for share resistance. For ( d ), it should also be noted that the critical section may not be at midspan but rather at

37、some point away from it where the depth ha</p><p>  Most pretensioning plants in the United States have buried anchors along the stressing beds so that the tendons for a pretensioned beam can be bent, Fig. 8

38、-7( f ) and ( g ). It may be economical to do so ,if the beam has to be of straight and uniform section, and if the MG is heavy enough to warrant such additional expense of bending. Means must be provided to reduce the f

39、rictional loss of prestress produced by the bending of the tendons. For example, the tendons may be tensioned first from the </p><p>  It is evident from the above discussion that many different layouts are

40、possible. Only some basic forms are described here, the variations and combinations being left to the discretion of the designer. The correct layout for each structure will depend upon the local conditions and the practi

41、cal requirements as well as upon theoretical considerations.</p><p>  Most of the layouts for pretensioned beams can be used for posttensioned ones as well. But, for posttensioned beams, Fig. 8-8, it is not

42、necessary to keep the tendons straight, since slightly bent or curved tendons can be as easily tensioned as straight ones. Thus, for a beam of straight and uniform section, the tendons are very often curved as in Fig. 8-

43、8( a ). Curving the tendons will permit favorable positions of c. g. s. to be obtained at both the end and midspan sections, and other points a</p><p>  Fig 8-8. Layouts for posttensioned beams.</p>&

44、lt;p>  A combination of curved or bent tendons with curved or bent soffits is frequently used, Fig. 8-8( b ), when straight soffits are not required. This will permit a smaller curvature in the tendons, thus reducing

45、the friction. Curved or bent cables are also combined with beams of variable depth, as in ( c ). Combinations of straight and curved tendons are sometimes found convenient, as in ( d ).</p><p>  Variable ste

46、el area along the length of a beam is occasionally preferred. This calls for special design of the beam and involves details which may offset its economy in weight of steel. In Fig. 8-8( e ), some cables are bent upward

47、and anchored at top flanges. In ( f ), some cables are stopped part way in the bottom flange. These arrangements will save some steel but may not be justified unless the saving is considerable as for very long spans carr

48、ying heavy loads.</p><p>  8-3 Cable Profiles</p><p>  We stated in the previous section that the layout of simple beams is controlled by the maximum moment and end sections so that, after these

49、 two sections are designed, other sections can often be determined by inspection. It sometimes happens, however, that intermediate points along the beam may also be critical, and in many instances it would be desirable t

50、o determine the permissible and desirable profile for the tendons. To do this, a limiting zone for the location of c. g. s. is first obtained</p><p>  The method described here is intended for simple beams,

51、but it also serves as an introduction to the solution of more complicated layouts, such as cantilever and continuous spans, where cable location cannot be easily determined by inspection. The method is a graphical one; g

52、iving the limiting zone within which the c. g. s. must pass in order that no tensile stresses will be produced. Compressive stresses in concrete are not checked by this method. It is assumed that the layout of the concre

53、te s</p><p>  Referring to Fig . 8-9, having determined the layout of concrete sections, we proceed to compute their kern points, thus yielding two kern lines, one top and one bottom, ( c ) . Note that for v

54、ariable sections, these kern lines would be curved, although for convenience they are shown straight in the figure representing a beam with uniform cross section.</p><p>  For a beam loaded as shown in ( a )

55、, the minimum and maximum moment diagrams for the girder load and for the total working load respectively are marked as MG and MT in ( b ). In order that, under the working load, the center of pressure, the C-line, will

56、not fall above the top kern line, it is evident that the c. g. s. must be located below the top kern at least a distance</p><p>  a1=MT/F (8-1)</p><p>  Fig 8-9. Locatio

57、n of limiting zone for c. g. s.</p><p>  If the c. g. s. falls above that upper limit at any point, then the C-line corresponding to moment MT and prestress F will fall above the top kern, resulting in tensi

58、on in the bottom fiber.</p><p>  Similarly, in order that the C-line will not fall below the bottom kern line, the c. g. s. line must not be positioned below the bottom kern by a distance greater than which

59、gives the lower limit for the location of c. g. s. If the c. g. s. is positioned above that lower limit, it is seen that the C-line will be above the bottom kern and there will be no tension in the top fiber under the g

60、irder load and initial prestress F0.</p><p>  Thus, it becomes clear that the limiting zone for c. g. s. is given by the shaded area in Fig. 8-9( c ), in order that no tension will exist both under the girde

61、r load and under the working load. The individual tendons, however, may be placed in any position so long as the c. g. s. of all the cables remains within the limiting zone.</p><p>  The position and width o

62、f the limiting zone are often an indication of the adequacy and economy of design, Fig. 8-10. If some portion of the upper limit falls outside or too near the bottom fiber, in ( a ), either the prestress F or the depth o

63、f beam at that portion should be increased. On the other hand, if it falls too far above the bottom fiber, in ( b ), either the prestress or the beam depth can be reduced. If the lower limit crosses the upper limit, in (

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論