材料畢業(yè)設(shè)計(jì)外文翻譯_第1頁(yè)
已閱讀1頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  本科畢業(yè)設(shè)計(jì)(論文)</p><p>  外文參考文獻(xiàn)譯文及原文</p><p>  學(xué) 院 機(jī)電工程學(xué)院 </p><p>  專 業(yè) 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 </p><p> ?。ㄎ㈦娮又圃煅b備及其自動(dòng)化方向)</p><p> 

2、 年級(jí)班別 2008級(jí)(1)班 </p><p>  學(xué) 號(hào) 3108000629 </p><p>  學(xué)生姓名 楊慧明 </p><p>  指導(dǎo)教師 熊漢偉 </p><

3、;p><b>  2012年6月</b></p><p><b>  目 錄</b></p><p>  外文參考文獻(xiàn)譯文2</p><p><b>  原 文11</b></p><p><b>  外文參考文獻(xiàn)譯文</b><

4、;/p><p>  第三章 材料特性和分析</p><p>  材料特性是鑒別材料的基礎(chǔ)和用在逆向工程評(píng)估性能的一部分。其中在逆向工程中最經(jīng)常被問(wèn)到的問(wèn)題是,用什么材料特性評(píng)定兩種相同的材料。從理論上說(shuō),只有當(dāng)兩種材料的特性被對(duì)比并找出相同點(diǎn)后,才可以評(píng)定他們是相同的。這樣的成本可能是非常高的,但在技術(shù)上的確是可行的。在工程實(shí)踐中,當(dāng)有足夠的數(shù)據(jù)證明兩個(gè)材料有相關(guān)特性的價(jià)值時(shí),通常會(huì)認(rèn)為符合了

5、可接受風(fēng)險(xiǎn)的要求。</p><p>  確定相關(guān)的材料特性和當(dāng)量需要全面的了解材料和這種材料制成的部分功能。在逆向工程評(píng)估項(xiàng)目中,要想令人信服地解釋有關(guān)材料的性能、屬性、最終拉伸強(qiáng)度,疲勞強(qiáng)度,抗蠕變性,斷裂韌性,工程師需要至少提供以下闡述:</p><p>  特性重要性:解釋相關(guān)的特性對(duì)零件的設(shè)計(jì)功能來(lái)說(shuō)是多么重要。</p><p>  風(fēng)險(xiǎn)評(píng)估:解釋有關(guān)屬性將

6、如何影響器件的性能,這種材料的屬性如果未能滿足設(shè)計(jì)值會(huì)有什么潛在后果。</p><p>  性能保證:說(shuō)明對(duì)比原始材料,需要進(jìn)行怎樣的測(cè)試以顯示其等效性。</p><p>  本章的主要目的是討論和著重于在逆向工程中材料特性與機(jī)械冶金的應(yīng)用,以幫助讀者完成這些工作任務(wù)。機(jī)械性,冶金性能,物理化學(xué)特性,是進(jìn)行逆向工程機(jī)械中最相關(guān)的材料特性部分。力學(xué)性能是與當(dāng)用力時(shí)彈性和塑性的反應(yīng)有關(guān)。主要力

7、學(xué)性能包括抗拉強(qiáng)度,屈服強(qiáng)度,延展性,抗疲勞,抗蠕變性,應(yīng)力斷裂強(qiáng)度。他們通常反映的應(yīng)力和應(yīng)變之間的關(guān)系。許多力學(xué)性能與冶金性能和物理化學(xué)性質(zhì)密切相關(guān)。</p><p>  冶金性能是指金屬元素和合金的物理和化學(xué)特性,如合金的微觀結(jié)構(gòu)和化學(xué)成分。這些特性是與熱力學(xué)、動(dòng)力學(xué)過(guò)程和通常在這些過(guò)程中發(fā)生的化學(xué)反應(yīng)密切相關(guān)的。熱力學(xué)的原理決定當(dāng)兩種元素混合在一起時(shí)能否被結(jié)合成合金成分。動(dòng)力學(xué)過(guò)程決定合成的速度。熱力學(xué)的原

8、理常用于建立平衡相圖,這有助于工程師設(shè)計(jì)新的合金和解釋更多的冶金性能和反應(yīng)。它需要一個(gè)很長(zhǎng)的時(shí)間才能達(dá)到平衡狀態(tài)。因此,大部分的晶粒形貌和合金結(jié)構(gòu)上的動(dòng)力學(xué)過(guò)程取決于反應(yīng)速率,如晶粒的增長(zhǎng)速度。</p><p>  熱處理是一個(gè)過(guò)程,被廣泛地使用,通過(guò)冶金反應(yīng)獲得最佳的機(jī)械性能。熱處理應(yīng)用于固體無(wú)機(jī)非金屬材料,通過(guò)加熱和冷卻操作的反復(fù)結(jié)合來(lái)獲得合適的組織形態(tài)甚至是理想的特性。最常用的適用于熱處理工藝包括退火處理,

9、固溶處理,老化處理。退火是一個(gè)過(guò)程,在特定溫度加熱下一段時(shí)間,然后再慢慢在特定的速度下降溫。它主要用于軟化金屬,提高其可加工性和機(jī)械延展性。適當(dāng)?shù)耐嘶鹨矊⒃黾硬牧蠈用娴姆€(wěn)定性。最常見使用的退火工藝是完全退火,制程退火,等溫退火,球化。當(dāng)退火的唯一目的是為減小壓力,該退火過(guò)程通常被稱為消除應(yīng)力。它減少了由鑄造,淬火,正火,加工,冷加工,或焊接引起的內(nèi)部的殘余應(yīng)力。固溶熱處理僅適用于合金,但不適用于純金屬。在這個(gè)過(guò)程中,合金被加熱到特定溫度

10、以上,并在此溫度下維持足夠長(zhǎng)的時(shí)間,使各組成元素溶合成固溶體,隨后迅速冷卻,以形成固溶體。結(jié)果,這個(gè)過(guò)程中產(chǎn)生過(guò)飽和,當(dāng)合金冷卻到一個(gè)較低的溫度,其呈熱力??學(xué)不穩(wěn)定狀態(tài),因?yàn)榻M成元素的溶解度隨溫度升高而降低。固溶熱處理往往后續(xù)是老化處理以達(dá)到沉淀硬化。從熱處理角度來(lái)看,老化處理描述了某些合金在隨著時(shí)間,溫度變化的特性。這是一個(gè)從過(guò)飽和固溶體狀態(tài)變成沉淀的結(jié)</p><p><b>  3.1合金結(jié)構(gòu)當(dāng)

11、量</b></p><p>  3.1.1工程合金結(jié)構(gòu)</p><p>  工程合金是工程應(yīng)用中的金屬物質(zhì),已廣泛應(yīng)用于許多行業(yè)數(shù)百年之久。例如,鋁合金在航空業(yè)中的利用從一開始一直到今天;在1903年,萊特兄弟飛機(jī)的曲軸箱由鋁合金鑄造而成,兩個(gè)或兩個(gè)以上的元素組成的合金是擁有不同的屬性的。當(dāng)它們從液態(tài)冷卻到固態(tài),大多數(shù)合金會(huì)形成結(jié)晶結(jié)構(gòu),但沒(méi)有結(jié)晶的將會(huì)凝固,像玻璃。金屬玻璃的

12、非晶結(jié)構(gòu),是一種金屬元素的隨機(jī)布局。相比之下,晶體結(jié)構(gòu)根據(jù)合金元素有一個(gè)反復(fù)的樣式。例如,鋁的晶體結(jié)構(gòu)——4%的銅合金是基于鋁與銅原子融合的晶體結(jié)構(gòu)。衡量一種合金的性能如硬度,是它性質(zhì)表現(xiàn)的一部分,和它的晶體結(jié)構(gòu)之下是其獨(dú)特的通用結(jié)構(gòu)。它們都在逆向工程的金屬識(shí)別中發(fā)揮著關(guān)鍵的作用。</p><p>  純金屬元素,例如,鋁、銅、和鐵,它們的原子排列具有規(guī)律性。這種原子模式的排序順序最小單位是單元。單個(gè)晶體是這些沒(méi)

13、有晶粒邊界的單元在相同方向的聚合。它本質(zhì)上是一個(gè)單一的原子有序排列成的巨大晶粒。這種獨(dú)特的晶體結(jié)構(gòu),使單晶的力學(xué)性能特別明顯,能夠特殊應(yīng)用。單晶鎳基高溫合金在現(xiàn)代飛機(jī)發(fā)動(dòng)機(jī)渦輪葉片中得到應(yīng)用。第一臺(tái)單晶刃飛機(jī)的發(fā)動(dòng)機(jī)是惠普J(rèn)T9D-7R4,并在1982年獲得美國(guó)聯(lián)邦航空局的認(rèn)證。它應(yīng)用于很多飛機(jī),例如波音767和空中客機(jī)A310。與對(duì)應(yīng)的等軸晶粒對(duì)比,一個(gè)單一晶體的噴氣發(fā)動(dòng)機(jī)渦輪機(jī)翼可以抵抗更多次的腐蝕,和好得多的蠕變強(qiáng)度和抗熱疲勞性能

14、。然而,大多數(shù)工程合金,有很多種形態(tài)。晶粒尺寸和其質(zhì)地對(duì)其合金性能有很深遠(yuǎn)的影響。細(xì)粒工程合金在室溫下通常具有較高的拉伸強(qiáng)度。然而,對(duì)于高溫應(yīng)用,粗晶粒合金由于其耐蠕變性能更好,為首選。微觀結(jié)構(gòu)對(duì)于工程合金性能的影響將在后面詳細(xì)討論。</p><p>  3.1.2工藝影響及產(chǎn)品材料的等價(jià)形式</p><p>  從不同的制造工藝和原材料生產(chǎn)的產(chǎn)品形式計(jì)算出結(jié)果的部分功能,特別是獨(dú)特的微觀

15、結(jié)構(gòu),是廣泛應(yīng)用于確認(rèn)逆向工程材料等效性的特點(diǎn)。傳統(tǒng)的工程合金用于制造過(guò)程產(chǎn)生了一種特定的產(chǎn)品形式包括鑄造,鍛造,軋制,以為其他冷熱工作。粉末冶金快速凝固,化學(xué)氣相沉積法,以及許多其他特殊工藝,例如,魚鷹噴射成形和超塑性成形,也可用于針對(duì)特定應(yīng)用的行業(yè)。一些近凈型的過(guò)程,直接塑造成接近最終產(chǎn)品的形式或幾何形狀復(fù)雜的合金。在具有多個(gè)處理步驟的傳統(tǒng)鑄造和鍛造產(chǎn)品中,從原材料到最終產(chǎn)品涉及較少步驟的簡(jiǎn)單轉(zhuǎn)換往往是更可取的。例如,“魚鷹”噴射成

16、型過(guò)程霧化熔融的合金,形成一個(gè)環(huán)型的瓶坯硬件或密封的如發(fā)動(dòng)機(jī)渦輪。近凈型預(yù)制棒接著通過(guò)熱等靜壓機(jī)制成最終的產(chǎn)品。一個(gè)魚鷹噴射成形7A60合金鎳基合金產(chǎn)品更具成本效益,它通常有一個(gè)約65微米的平均晶粒尺寸。它顯示了一個(gè)類似的微觀結(jié)構(gòu)和可比物業(yè)鍛造件具有相同的合金成分,并比鑄造產(chǎn)品具有更好的性能。制造技術(shù)的最新進(jìn)展中,生產(chǎn)了顯微結(jié)構(gòu)和納米合金。工程合金的力學(xué)性能主要取決于兩個(gè)要素:組成和微觀結(jié)構(gòu)。盡管合金成分有特定的結(jié)構(gòu),但是微觀結(jié)構(gòu)在這過(guò)

17、程中不斷發(fā)展。因此,不同產(chǎn)品中工程合金的結(jié)構(gòu)</p><p><b> ?。╝)</b></p><p><b> ?。╞)</b></p><p><b>  圖3.1</b></p><p>  這在鋁合金擠壓成型中能觀察到很不同的微觀結(jié)構(gòu),如圖3.1b所示,盡管這兩者有

18、相同的合金成分:鋁-3.78%,銅-1.63%,鋰-1.40%。不用多說(shuō),鑄鋁和擠壓鋁箔也一樣有非常不同的特性。在逆向工程中,該微觀結(jié)構(gòu)在零件的制造過(guò)程中提供了重要的信息。</p><p>  3.2 物相的定性與定量</p><p>  相圖是根據(jù)相變過(guò)程建立起來(lái)的。它說(shuō)明了合金成分,相位和溫度之間的關(guān)系。它提供了各種制造和熱處理工藝的參考指南。從相圖中提取的信息對(duì)物相鑒定起了重要作用,

19、因此它在逆向工程中對(duì)制造工藝和熱處理驗(yàn)證也是至關(guān)重要的。本節(jié)將討論相圖和熱力學(xué)和動(dòng)力學(xué)的相關(guān)理論的基礎(chǔ)。</p><p><b>  3.2.1 相圖</b></p><p>  合金相圖是一個(gè)冶金插圖,顯示熔化和凝固溫度以及合金在特定溫度下的不同階段。平衡相圖顯示了各平衡相的函數(shù)成分和溫度。根據(jù)推定,動(dòng)力學(xué)反應(yīng)過(guò)程在每一步是足夠快地達(dá)到平衡狀態(tài)。這本書中,除了另有指

20、明之外,下面所有的相圖都指的是平衡相圖。圖3.2只是是一個(gè)部分的鐵碳相圖(FE-C),,因?yàn)檫@個(gè)圖非常復(fù)雜所以無(wú)法全部完成。相圖的Y軸是溫度,x軸表示合金元素組成量。二元Fe-C相圖中,鐵是主要的基本元素,碳是合金元素。最左邊的Y軸代表純鐵,也就是100%的鐵。</p><p><b>  溫度</b></p><p>  鐵 碳的百分含量<

21、/p><p>  圖3.2 部分的Fe-C相示意圖。</p><p>  圖的橫坐標(biāo)從左到右增加含碳量。合金元素的單位通常是百分比含量,但偶爾使用原子百分比含量。有時(shí)在圖的底部或頂部標(biāo)記百分點(diǎn)符號(hào)。圖3.2中顯示的碳含量范圍從0到6.7%。含碳量6.7%的 Fe是一種金屬互化物,碳化鐵。合金的各構(gòu)成要素可能由范圍固定的或窄的成分合并成一個(gè)獨(dú)特的復(fù)合合金。這些化合物是金屬化合物。大多數(shù)金屬化合物

22、有自己的特性,有特定的成分和獨(dú)特的晶體結(jié)構(gòu)及性能。碳化鐵Fe3C,是有色鐵碳合金中最常見的金屬化合物。大多數(shù)的Fe-C二元相圖是Fe-Fe3C相圖,用Fe3C而不是100%純碳作基線圖。</p><p>  J.威拉德·吉布斯相律和熱力學(xué)法例相律指導(dǎo)金屬相變相關(guān)知識(shí)。吉布斯相律通過(guò)數(shù)學(xué)公式3.1描述,其中F是自由或獨(dú)立變量,C是元素?cái)?shù)量,而P是在熱力學(xué)平衡系統(tǒng)中的相數(shù)。</p><p

23、>  F = C – P + 2 (3.1)</p><p>  典型的獨(dú)立變量是溫度和壓力。大多數(shù)相圖假設(shè)在大氣壓力下。當(dāng)合金熔化,固體和液體并存,因此,P =2。吉布斯相律只允許在純金屬中有一個(gè)獨(dú)立變量,其中C= 1。這說(shuō)明,在大氣壓力下,純金屬在一個(gè)特定的熔融溫度下熔化以及一個(gè)固定的沸點(diǎn)下沸騰。例如,在圖3.2中純鐵的熔化溫度標(biāo)記為15

24、34°C。然而,二元合金,其中C= 2,吉布斯相律允許更多的獨(dú)立變量。對(duì)于一個(gè)給定的組成,二元合金的液固相變溫度是在一定的溫度范圍內(nèi),而不是某一個(gè)固定的溫度。圖3.2所示,在1,400°C,F(xiàn)e-3%C二元合金是均勻的液體狀態(tài)。當(dāng)溫度降低到液相溫度以下(1300°C左右)它會(huì)開始凝固。在相圖中液相是存在于液體開始凝固的溫度邊界內(nèi)。換句話說(shuō),液相開始與各種成分的合金熔化溫度。在圖3.2中,液相表示由1534&

25、#176;C時(shí)的純液態(tài)鐵融化溫度曲線持續(xù)到1147°C時(shí)的Fe-4.3%C熔融溫度曲線之間. Fe-4.3%C被定義為共晶成分。盡管這是一個(gè)二元合金,但是它是在1147°C這個(gè)固定的溫度融化,因?yàn)檫@兩個(gè)不同的固相能在同一溫度凝固。如圖3.2所示,共晶溫度是最低的鐵碳合金熔化溫度。完成凝固溫度的曲線被定義為固相線。上述合金</p><p>  下面的合金固相線是一個(gè)均勻的固態(tài),這通常被稱為作為固

26、相或固溶體。各種合金的固相通常用指定的希臘字母,從左邊開始表示α相,繼續(xù)由相圖右移,按順序地表示β,χ,δ,ε,φ,γ,η相。對(duì)于 Fe–3 %C合金,新形成的γ固相和剩余的液體,在1147°C的固相和液相之間共存。Fe–3% C合金隨著溫度的不斷降低相繼被轉(zhuǎn)化成不同固相,由γ相向混合了Fe3C的α相轉(zhuǎn)化。因此,熔融合金將從均勻相液體狀態(tài)凝固成多種固相狀態(tài),在凝固過(guò)程中每種形態(tài)的轉(zhuǎn)變是一步步連續(xù)地進(jìn)行的。在特定溫度下的每種相

27、可以根據(jù)杠桿原理進(jìn)行定量分析。相圖上說(shuō)明了一切相變,并給工程師們提供了寶貴的“足跡”,讓他們回溯在進(jìn)行逆向工程中的一部分原始經(jīng)歷。</p><p>  熱力學(xué)的原理可以從理論上推測(cè)的平衡相圖中的相的存在。然而,它可能需要很長(zhǎng)時(shí)間來(lái)解釋相變?cè)怼O嗟男纬伤俣群蜋C(jī)制是由動(dòng)力學(xué)原理指出和解釋的,動(dòng)力學(xué)原理也解釋了許多非平衡相變?cè)怼8鞣N非平衡相變圖被用于許多工程應(yīng)用中,通過(guò)控制溫度的變化率以創(chuàng)建特定的非平衡相。例如,鐵

28、合金持續(xù)的冷卻曲線被廣泛應(yīng)用于熱處理工業(yè)。從逆向工程的角度來(lái)看,這些持續(xù)的冷卻曲線往往比平衡相圖提供更實(shí)用的信息。</p><p>  大多數(shù)工程合金中含有兩個(gè)以上的合金元素。如果有三個(gè)組成元素,它則被稱為三元體系。三元相圖是一個(gè)三維空間棱鏡,溫度軸被垂直地建立在組成的三角基面之上,每一面代表一個(gè)元素。這是立體相圖,由三個(gè)二元相圖建成,每面一個(gè)二元相圖。</p><p>  3.2.2

29、等效晶粒形態(tài)</p><p>  最常見的三種金屬的微觀結(jié)構(gòu)晶粒形貌是等軸晶,與樹突狀鑄件結(jié)構(gòu)混合的柱狀,和單晶。在等軸晶微觀結(jié)構(gòu)中,如圖3.1a所示,在所有軸的方向上具有大致相當(dāng)?shù)某叽?。在鑄件凝固過(guò)程中,柱狀結(jié)構(gòu)通常從寒冷的模具表面開始成形,并逐漸向內(nèi)部移動(dòng),形成粗大的柱狀晶粒形貌。柱狀結(jié)構(gòu)通常在最后會(huì)被混合在樹突狀鑄件結(jié)構(gòu)中。單晶沒(méi)有相鄰的形態(tài)和沒(méi)有晶粒邊界;整個(gè)晶體在一個(gè)晶體方向?qū)R。</p>

30、<p><b>  圖3.3</b></p><p>  然而,這些基本晶粒的形態(tài)將通過(guò)動(dòng)力學(xué)過(guò)程演變成更復(fù)雜的結(jié)構(gòu)。例如,再晶粒和晶粒的變化。其他衍生的微觀結(jié)構(gòu)是在成形制品的具體工藝中體現(xiàn)出來(lái)的。例如,冷或熱的圖紙可以產(chǎn)生顆粒在一個(gè)方向上一字排開的高度定向質(zhì)感的微觀結(jié)構(gòu)。圖3.3顯示了高方向的鎢絲質(zhì)感的微觀結(jié)構(gòu)。在逆向工程中,復(fù)制的部分晶粒形貌至關(guān)重要的兩個(gè)原因如下:首先,材料

31、的性能和部分功能很大程度上取決于微觀結(jié)構(gòu);其次,晶體的形態(tài)給制造工藝和熱處理工藝提供了關(guān)鍵的信息。不同的熱處理工藝,有不同的制造工藝呈現(xiàn)出不同的晶粒形貌,并具有不同的力學(xué)性能。</p><p><b>  原 文</b></p><p>  Material Characteristics and Analysis</p><p>  M

32、aterial characteristics are the cornerstone for material identification and performance evaluation of a part made using reverse engineering. One of the most frequently asked questions in reverse engineering is what mater

33、ial characteristics should be evaluated to ensure the equivalency of two materi-als. Theoretically speaking, we can claim two materials are “the same” only when all their characteristics have been compared and found equi

34、valent. This can be prohibitively expensive, and might be t</p><p>  1. Property criticality: Explain how critical this relevant property is to the part’s design functionality. </p><p>  2. Risk

35、 assessment: Explain how this relevant property will affect the part performance, and what will be the potential consequence if this material property fails to meet the design value. </p><p>  3. Performance

36、 assurance: Explain what tests are required to show the equivalency to the original material. </p><p>  The primary objective of this chapter is to discuss the material characteristics with a focus on mechan

37、ical metallurgy applicable in reverse engineering to help readers accomplish these tasks. </p><p>  The mechanical, metallurgical, and physical properties are the most relevant material properties to reverse

38、 engineer a mechanical part. The mechanical properties are associated with the elastic and plastic reactions that occur when force is applied. The primary mechanical properties include ultimate tensile strength, yield st

39、rength, ductility, fatigue endurance, creep resistance, and stress rupture strength. They usually reflect the relationship between stress and strain. Many mechanical propert</p><p>  The metallurgical proper

40、ties refer to the physical and chemical characteristics of metallic elements and alloys, such as the alloy microstructure and chemical composition..These characteristics are closely related to the thermodynamic and kin

41、etic processes, and chemical reactions usually occur during these processes. The principles of thermodynamics determine whether a constituent phase in an alloy will ever be formulated from two elements when they are mixe

42、d together. The kinetic process dete</p><p>  Heat treatment is a process that is widely used to obtain the optimal mechanical properties through metallurgical reactions. It is a combination of heating and c

43、ooling operations applied to solid metallic materials to obtain proper microstructure morphology, and therefore desired properties. The most commonly applied heat treatment processes include annealing, solution heat tr

44、eatment, and aging treatment. Annealing is a process consisting of heating to and holding at a specified temperature fo</p><p>  Physical properties usually refer to the inherent characteristics of a materia

45、l. They are independent of the chemical, metallurgical, and mechanical processes, such as the density, melting temperature, heat transfer coefficient, specific heat, and electrical conductivity. These properties are us

46、ually measured without applying any mechanical force to the material. These properties are crucial in many engineering applications. For example, the specific tensile strength (strength per unit weigh</p><p&

47、gt;  3.1 Alloy Structure Equivalency </p><p>  3.1.1 Structure of Engineering alloys </p><p>  Engineering alloys are metallic substances for engineering applications, and have been widely

48、 used in many industries for centuries. For example, the utilization of aluminum alloys in the aviation industry started from the beginning and continues to today; the crankcase of the Wright brothers’ airplane was made

49、of cast aluminum alloy in 1903. Alloys are composed of two or more elements that possess properties different from those of their constituents. When they are cooled from the liquid state </p><p>  Pure metal

50、lic elements, for example, aluminum, copper, or iron, usually have atoms that fit in a few symmetric patterns. The smallest repetitive unit of this atomic pattern is the unit cell. A single crystal is an aggregate of t

51、hese unit cells that have the same orientation and no grain boundary. It is essentially a single giant grain with an orderly array of atoms. This uniquecrystallographic structure gives a single crystal exceptional mechan

52、ical strength, and special applications. The singl</p><p>  3.1.2 Effects of Process and Product Form on Material Equivalency</p><p>  The part features, distinctive microstructure in particu

53、lar, resulted from dif- </p><p>  ferent manufacturing processes, and product forms thereby produced from raw materials are the characteristics widely used to identify material equivalency in reverse enginee

54、ring. Conventional manufacturing processes used on engineering alloys to produce a specific product form include casting, forging, and rolling, as well as other hot and cold work. Power metallurgy, rapid solidification,

55、chemical vapor deposition, and many other special processes, for example, Osprey spray forming and superpl</p><p>  The mechanical properties of engineering alloys are primarily determined by two factors: c

56、omposition and microstructure. Though the alloy composition is intrinsic by design, the microstructure evolves during manufacturing. The microstructure and consequently the mechanical properties of an engineering alloy c

57、an be drastically different in different product forms. Figure 3.1a shows the equiaxed grain morphology of aluminum alloy casting; </p><p><b> ?。╝)</b></p><p><b>  (b)</b>

58、;</p><p>  FIgurE 3.1 </p><p>  Microstructures of aluminum alloy casting. (b) Microstructure of aluminum alloy extrusion.</p><p>  It is vastly different from the microstructure ob

59、served in aluminum alloy extrusion, as shown in Figure 3.1b, despite that both have the identical alloy composition of Al–3.78% Cu–1.63% Li–1.40% Mg. Needless to say, cast aluminum and extruded aluminum pats have very di

60、fferent properties as well. In reverse engineering, the microstructure provides invaluable information to retrace the part manufacturing process.</p><p>  3.2 Phase Formation and Identification</p>

61、<p>  The phase diagram is established based on the phase transformation process. It illustrates the relationship among alloy composition, phase, and temperature. It provides a reference guide for various manufa

62、cturing and heat treatment processes. The information that can be extracted from a phase diagram plays a key role in phase identification, and therefore is crucial for manufacturing process and heat treatment verificatio

63、n in reverse engineering. This section will discuss the fundamentals of p</p><p>  3.2.1 Phase Diagram</p><p>  An alloy phase diagram is a metallurgical illustration that shows the melting

64、 and solidification temperatures as well as the different phases of an alloy at a specific temperature. The equilibrium phase diagram shows the equilibrium phases as a function of composition and temperature; presumptive

65、ly, the kinetic reaction processes are fast enough to reach the equilibrium condition at each step. All phase diagrams hereafter in this book are referred to as equilibrium phase diagrams unless otherwis</p><p

66、>  FIgurE 3.2 </p><p>  Schematic of partial Fe-C phase diagram.</p><p>  The amount of carbon increases from left to right. The units for the alloying element are usually in weight percentag

67、e, but occasionally atomic percent- age is used. Sometimes both are shown with one percentage scale marked at the bottom and the other on the top. In Figure 3.2 the carbon contents range from 0 to 6.7%. Fe–6.7% C is an i

68、ntermetallic compound, cementite. The constituent elements in an alloy might combine into a distinct compound with a fixed or narrow composition range. These compo</p><p>  F = C – P + 2

69、 (3.1) </p><p>  The typical independent variables are temperature and pressure. Most phase diagrams assume atmospheric pressure. When an alloy melts, both solid and liquid coexist, and there

70、fore P = 2. Gibbs’phase rule then only allows for one independent variable in a pure metal where C = 1. This explains that at atmospheric pressure, pure metal melts at a specific melting temperature and boils at a fixe

71、d boiling point. For example, the melting temperature of pure iron is marked as 1,534°C in Figure 3.2.</p><p>  allowing engineers to retrace the process the original part experienced in reverse engin

72、eering. </p><p>  The principles of thermodynamics can theoretically predict the existence of a phase in an equilibrium phase diagram. However, it might take infinite time to accomplish the phase transformat

73、ion. The rate and mechanism of forming this phase are guided by the principles of kinetics, which also explain the many nonequilibrium phase transformations. A variety of nonequilibrium phase transformation diagrams are

74、used for many engineering applications where the temperature change rate is intentionally c</p><p>  Most engineering alloys contain more than two alloying elements. If there are three constituent elements

75、, it is called a ternary system. The ternary phase diagram is a three-dimensional space prism where the temperature axis is vertically built on top of the composition triangle base plane, with each side representing one

76、element. It is a space phase diagram with three binary phase diagrams, one on each side. </p><p>  3.2.2 grain Morphology Equivalency</p><p>  The three most commonly observed grain morpholo

77、gies of metal microstructure are equiaxed, columnar mixed with dendritic casting structure, and single crystal. In the equiaxed microstructure, shown in Figure 3.1a, one grain has roughly equivalent dimensions in all a

78、xial directions. The columnar structure usually appears in castings when the solidification process starts from a chilly mold surface and gradually moves inward to form a coarse columnar grain morphology. The columnar

79、structure is </p><p>  FIgurE 3.3 </p><p>  Microstructure of a tungsten wire with elongated grain morphology.</p><p>  more complex configurations through kinetic processes, for ex

80、ample, recrystallization and grain growth. Other derivative microstructures are the direct products of specific processes. For instance, cold or hot drawing can produce highly directionally textured microstructure with

81、 all the grains lined up in one direction. Figure 3.3 shows the textured microstructure with high directionality of a tungsten wire. In reverse engineering it is crucial that the replicated part have grain morphology eq&

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論