機械設計制造及其自動化專業(yè)畢業(yè)設計外文翻譯--微型手術機器人在外科領域的應用_第1頁
已閱讀1頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  中文5629字</b></p><p>  畢業(yè)設計(論文)外文資料翻譯</p><p>  學院(系): 機械工程學院 </p><p>  專 業(yè): 機械設計制造及其自動化 </p&g

2、t;<p>  姓 名: </p><p>  學 號: </p><p>  外文出處: The Operating Room of 21st Century</p><p>  Micha

3、el L.J.Apuzzo</p><p>  附 件: 1.外文資料翻譯譯文;2.外文原文。 </p><p>  注:請將該封面與附件裝訂成冊。</p><p>  附件1:外文資料翻譯譯文</p><p>  微型手術機器人在外科領域的應用</p><p><b>  ——外科透視</b&g

4、t;</p><p><b>  1.簡介</b></p><p>  神經(jīng)外科學作為一門新興的科學,逐漸被認為是外科領域中最富創(chuàng)新的一門學科,很有可能成為從根本上對人體器官系統(tǒng)全新認識的重要途徑。時代在進步,隨之患者的要求也提高了,再加之技術的革新和我們在神經(jīng)科學領域的認識過程中有了重大進展,使神經(jīng)外科學的內容不斷的被更新和豐富,竟然到了讓多年來一直從事這方面研究的

5、專家也無法家全了解的地步。由于人類生活的方方面面都在起著明顯的變化,大量的新思想也如泉水一樣層出不窮,對新技術的否認并堅決認為熟悉的東西才是最安全的,最簡潔有效的。從另一個角度來說,心理學上解釋為人類本能的一種表現(xiàn),對新事物的接受總需要一些時間。額葉是大腦中一種調節(jié)抑制激素的腺體,這種激素的分泌促使人產生好奇的心理,在它們的作用下,位于腦皮層的運動原中樞能使人產生進一步探索的欲望;大腦中負責“計劃”的區(qū)域則對實驗的危險性進行評價;最后由

6、大腦中起“決定”作用的區(qū)域對整件事情下定論。因此說,由于額葉的作用,使我們每個人都經(jīng)歷了從創(chuàng)造,實驗到最后下結論的整個思考過程。</p><p>  醫(yī)療器械的發(fā)展也有著相似的過程,但在技術上還有待完善。計算機技術、放射成像技術、內窺鏡技術的引入,使手術室的整體設計和環(huán)境有了革命性的改觀。然而這都處于起步階段,革新不僅僅是引進先進的醫(yī)療設備,還需要有一批可以熟練操作控制這些醫(yī)療設備的專業(yè)人員,這個理念必須進行深一

7、層的理解。通過神經(jīng)外科學的大量知識理論基礎與內窺鏡反饋技術的綜合應用,使外科醫(yī)生及其工作人員能更快、更安全、更精確的實施手術,比起僅僅靠人的感性認識有過之而無不及??梢韵胂筮@種系統(tǒng)既能預測和組織手術的整個過程,又能進行計算和實施合理的準備,最后根據(jù)總體情況給出一個參考方案供醫(yī)生參考,而且在整個手術過程輔助醫(yī)生進行各種操作。盡管機器人本來在手術過程就扮演輔助的角色,但從某種程度上來說加以半自主性的內窺技術勢必效果回更好。如果說機器人系統(tǒng)不

8、會永遠是神經(jīng)外科技術整套醫(yī)療設備的固定部分,我是認同的,但我相信它將在神經(jīng)外科的發(fā)展道路上起到非常重要的作用。</p><p>  2.人類技術的發(fā)展過程</p><p>  在500年前,當Leonardo Da Vinci第一次在他自己的Chambord城堡里建造出獨特的具有雙螺旋結構式的樓梯的時候,沒有人會意識到就是這種獨特的雙螺旋結構將對人類文明的發(fā)展起了重大影響。無論從微觀世界還

9、是宏觀世界,從DNA結構的發(fā)展過程到影響人類文明的重大發(fā)明,人類都是在以這種螺旋式的方式盤旋上升,并不斷進步。</p><p>  然而,今天的手術是以精確度、重復一致性好,并且能很大程度上減少醫(yī)院和病人的醫(yī)療費用為目的,因此在具體的手術操作過程中某些細節(jié)操作以人的手工操作是達不到要求的。正是這種理念使我們相信機器人輔助技術將是手術室里的一種很有效的使用工具。經(jīng)過5億年的物種演化和500萬年社會變革,人類文明的

10、產物之一,在Wesbter的字典里被解釋為“一種能代替人類工作的機械裝置”的這種工具——機器人,它的發(fā)明是人類歷史發(fā)展過程中的又一個里程碑;它與同人類文明歷史中的其他重大發(fā)明如印刷術、內燃機、微處理器、空間技術、神經(jīng)刺激原理、以及人類基因圖譜具有同等歷史意義。</p><p>  隨著技術的革新,新技術給人類帶來的好處不用多說,但同時也增加了操作控制這些儀器的困難程度。也就是說,新技術在解決實際問題的時候反而是弊

11、大于利。</p><p>  因此這里有一個關鍵性的問題讓我們去思考:我們將繼續(xù)這些具有里程碑意義的認識和發(fā)明創(chuàng)造,并以人類文明的獨特方式盤旋上升?或者我們應該創(chuàng)造同樣可以有力證明技術發(fā)展的意義的新一代使用工具,并且這種發(fā)明也可以作為衡量人類進步的重要標志?又有或者我們應該打破就常規(guī)的發(fā)展之路,另辟溪徑,發(fā)起新的挑戰(zhàn)?</p><p>  3.機器人挑戰(zhàn)新技術</p><

12、;p>  早在19世紀80年代,機器人技術就已經(jīng)運用與醫(yī)療領域,只是而早期實驗的機器人都是根據(jù)當時現(xiàn)有的工業(yè)機器人為模板而設計的。人與機器之間的關系是相輔相成的,彼此之間都是取長補短的,但究竟是人類和機器人哪個更加優(yōu)越一些引起了疑問,這是必然的!人類的優(yōu)越性在與靈活、適應性強、有自主的判斷能力、以及手部和眼睛可以協(xié)調一致;而缺點在于容易疲勞、記憶存儲有限、而且不具備同時處理大量數(shù)據(jù)信息的能力,手部容易顫抖,情緒易受影響等。相比之下

13、,機器人的優(yōu)越性包括能精確定位和復位裝置、工作過程穩(wěn)定,重復手術一致性好,還可以控制手術過程中的各種參數(shù)如力度、持久力、強度等;也存在著許多不足,包括隨機判斷能力與空間位置的感知能力差,適應性不好,對故障敏感。</p><p>  機器人技術在人類歷史的發(fā)展過程中開辟了一個獨特的歷史篇章。這種新技術被看作是一種反映人類技術發(fā)展的標志,也是衡量人類進步的重要標準,并將夢想轉變成了現(xiàn)實。與以往不同,現(xiàn)在我們必須把考慮

14、的中心從重器械的模式轉移到重針對性上來,機器人技術革新不應該以純粹的為了制造出性能好的機器而發(fā)展的態(tài)度為目的。所以發(fā)展的中心應放在建立更智能,獨立自主的外科手術作業(yè)環(huán)境,并且在這個環(huán)境中,計算機輔助技術能自主的結合手術的具體情況分析出一套較專業(yè)的,對醫(yī)生有參考價值的手術方案。</p><p>  4.機器人在外科領域的應用</p><p>  機器人技術在外科環(huán)境中提供了良好的輔助性,它們

15、的應用提高了手術的精確度和靈活度,減輕了醫(yī)生由于生理因素而產生的顫抖,并能擴展增加機械手減少工作量,從而減少手術中操作人員,所以機器人技術在外科 領域中得到了越來越廣泛的應用。這里能列舉幾個典型的外科機器人系統(tǒng),但是它們還不夠成熟,至于能否投入正常使用還沒有明確的答案。當運用機器人技術進行輔助作業(yè)的時候,首先考慮到的問題是安全性、準確性、和效果以及與手術環(huán)境的統(tǒng)一問題,還應具備額外的益處(如減少手術操作時間,減少手術創(chuàng)傷,提高臨床成功率

16、),因此我們可以看出機器人技術輔助作業(yè)可以運用的領域是危險任務的執(zhí)行和外科手術領域。</p><p><b>  5.機器人輔助作業(yè)</b></p><p>  典型的機器人輔助作業(yè)有:手術工具的定位及顯微定位,軌跡的設計以及精確引導探針進行作業(yè)。醫(yī)療器械的多自由度設計使得手術工具在有限的作業(yè)空間可以任意的移動,在眾多的外科領域里多應用于骨骼損壞組織的切除、鉆除、磨除

17、、手術整形,以及軟組織的切除和有害組織的破壞。</p><p><b>  5.1 定位</b></p><p>  機器人技術輔助定位克服醫(yī)生在手術過程中的手部顫抖和疲勞,有人自身的生理因素引起的顫抖不對定位誤差產生很大的影響,因為其產生的誤差和手持工具抖動產生的誤差一樣大,波動范圍是50微米。用于手術工具定位的機器人系統(tǒng)典型的有NEUROMATE,MINERVA和

18、IMARL系統(tǒng)。像一些典型的手術操作,如顯微外科手術以及貼電極進行腦立體定位都需要以微米數(shù)量級來進行顯微定位。</p><p>  5.2 精確引導探針進行活體組織檢查</p><p>  據(jù)報道:一種被命名為MINI-RCM的小型機器人系統(tǒng)在外科手術中精確引導探針進行手術操作。另一種叫PAKY的機器人探針引導裝置,普遍運用于腎臟的活體組織檢查;并有其他幾種機器人襲用用于輔助作業(yè)進行活體組

19、織檢查,如NEV、ROMATE等系統(tǒng)。</p><p>  5.3 手術工具的配備和移動</p><p>  如牽開器的輔助,光學攝像頭的定位以及抽吸裝置的控制等煩瑣的工作都可以實現(xiàn)自動化。機器人系統(tǒng)配備的輔助工具常見的有超聲波探針,攝像頭,X-RAY發(fā)生器以及有6個自由度的新型CYBERKNIFE裝置。而有些機器人系統(tǒng)被設計成一機配備多種輔助工具如PROBOT機器人系統(tǒng),它同時配備一個超

20、聲波探針或其他工具如顯微鏡,還有一個影像采集攝像頭。其中設計最合理經(jīng)濟的一個系統(tǒng)是計算機位置控制系統(tǒng)AESOP,它是用來輔助內窺鏡定位的系統(tǒng)。AESOP系統(tǒng)利用語音識別系統(tǒng)控制機器人進行操作,而且能由簡單的口頭語音命令來實現(xiàn)手術工具的精確定位和連續(xù)移動。據(jù)報道:機器人定位系統(tǒng)已經(jīng)成功的實現(xiàn)了一個超聲波轉換器在頸動脈血管內的精確定位。</p><p>  5.4 位置移動和力度范圍</p><p

21、>  現(xiàn)代神經(jīng)外科手術由于手術工具在手術過程中操作范圍太小以致于那些技術熟練的醫(yī)生也無法得心應手。還有些新的治療方法如轉基因技術,它的操作是將細胞內的染色體亞細胞組織進行移植,精度高達10微米。目前,此項技術只運用于動物醫(yī)學,但要將此項技術轉移到手術室里對人進行手術,只有在機器人的協(xié)助下才能達到如此高的精度。在這些手術過程中,利用計算機技術將微觀的操作通過按比例縮減的方法使這種操作轉換成人所能感知的程度,這樣不僅能提高手術的質量,

22、而且很可能創(chuàng)造出新的微觀外科手術途徑。遠程操縱系統(tǒng)RAMS按比例縮減醫(yī)生手的移動范圍,并能消除手部的顫抖,從而避免了誤差。除此之外,還可以放大手術工具時的力度以便于醫(yī)生可以檢測并控制。計算機位置控制系統(tǒng)ZEUS是外科手術更加靈活,精確,是外科醫(yī)生在手術過程中能在自然舒服的手術操作環(huán)境中進行工作,大大提高了手術的效率。通過在一邊的操縱臺上通過位置控制系統(tǒng)進行控制,并通過監(jiān)控儀時刻追蹤手術的進程。ZEUS系統(tǒng)對手術的實時控制排除了醫(yī)生手部的

23、顫抖,并能使醫(yī)生在大范圍內自然的移動手的位置來實現(xiàn)人體內部手術操作的微觀運動。通過計算機輔助,外科醫(yī)生手部的運動形式以運動學原理為基</p><p><b>  5.5 力度控制</b></p><p>  在進行腦部手術的時候,力度控制顯得十分重要。在連續(xù)的接觸過程中保持適當?shù)牧Χ?。機器人輔助技術下進行的自動縮進較人工操作進行的縮進更加優(yōu)越,它的原理是靠末端執(zhí)行器反

24、饋回來的腦部組織對其施加的壓力進行調節(jié)。當說到對纖細易碎的物體進行抓取時,力度控制更是應該恰倒好處。抓緊力要適當以免物體的滑落,而且要輕柔,力度適當以免損壞物體,簡直就像是握著一個裝滿水的輕塑料杯子。</p><p>  6 機器人技術在外科手術中的應用</p><p>  機器人技術在外科手術領域得到了普遍的應用,其中典型的例子有:腹腔鏡的配合使用、整形外科、面部顱骨和上頜骨的外科手術,

25、顯微外科手術、放射外科手術、胸透視外科手術以及神經(jīng)外科手術。</p><p><b>  6.1 腹腔鏡</b></p><p>  LARS系統(tǒng)的主要功能是配合腹腔鏡進行圖像收集并診斷,提高了末端執(zhí)行器的作業(yè)精度。其他系統(tǒng)也得到了相應的運用,是整個外科手術在監(jiān)控的輔助下進行手術,效果十分好。據(jù)報道:機器人輔助技術與腹腔鏡的以及結合,已經(jīng)應用于膽囊切除術、冗余組織切除

26、,胃部檢查、結腸切除術。腸腔鏡的使用原理就是一個微型機器人探頭以半自主的方式進入到腸腔管道進行內部操作。這種技術不但能進行腸壁的檢查,而且還能進行活體組織檢查。據(jù)報道:在前列腺癌的治療過程中,腹腔鏡與機器人輔助技術相結合進行前列腺切開手術。以腸腔鏡為基礎工具進行前列腺疾病的治療,是其前列腺手術的一個技術革新。AESOP系統(tǒng)是一個通過語音識別系統(tǒng)進行位置控制的設備,它能有效的控制腸腔鏡在手術過程中位置。通過人在操縱臺上實施操作,加以機器人

27、輔助技術使得手術作業(yè)環(huán)境更加寬敞,并為人類對外科手術的認識打開了新的天地。至今,已經(jīng)有500名前列腺患者在AESOP系統(tǒng)的輔助下成功進行手術。</p><p><b>  6.2 整形外科</b></p><p>  機器人技術在整形外科手術中得到廣泛使用,典型的有ROBOTRACCK系統(tǒng)、GRIGOS系統(tǒng)以及ROBODOC系統(tǒng)。ROBODOC系統(tǒng)通過計算機圖像技術收

28、集病變圖像,對手術進行預測。從體內手術的角度,機械手運用高速轉頭,在股骨的手術中從外到里打個小孔,以便于植入股骨移植片?,F(xiàn)有的機器人技術在整形手術中應用,包括:膝關節(jié)整形手術、臀部整形手術、臀部整形手術的修復、臀部斷裂組織的修復以及脊柱整形手術中螺旋狀殘片組織的植入。機器人技術在整形手術中得到了很好的發(fā)揮,有超過900個成功手術案例是ROBODOC的杰作,ROBOTRACK系統(tǒng)也有超過200的成功案例。</p><p

29、>  6.3 微創(chuàng)外科手術</p><p>  機器人技術在改善微創(chuàng)外科手術的質量上有著巨大的潛力。機器人輔助設備通過按比例縮減人工操作時的力和力矩進行微創(chuàng)外科手術,是得人操作機器人手臂進行手術且簡單自如。這種技術為新的外科手術技術開辟了新的發(fā)展道路,并對現(xiàn)有的外科手術技術起了推波助瀾的作用。RAMS系統(tǒng)可以按比例縮減外科醫(yī)生手部運動的參數(shù)并能消除手部本身的生理顫抖,結果是單純的人工操作進行手術遠不如由操縱

30、系統(tǒng)進行手術工具的精確定位所達到的效果。而另一種應用于微創(chuàng)外科手術的系統(tǒng)是基于利用運動感知反饋原理。配備重定位系統(tǒng)的6自由度機械手在手術中的精度可達到高于2微米,這個系統(tǒng)通過末端執(zhí)行器的反饋信息而進行力和力矩的調節(jié),而外科醫(yī)生通過綜合操縱臺對手術的各個操作進行監(jiān)控。據(jù)報道:在各種微創(chuàng)外科手術應用領域,其他模式的機器人系統(tǒng)也得到了應用,而且工作過程平穩(wěn),收效甚佳。</p><p>  6.4 放射外科手術</

31、p><p>  CYBERKNIFE機器人系統(tǒng)可以通過線性加速裝置進行6自由度的精確定位。運用圖像技術輔助放射外科手術,把人平放在治療臺上,由旋轉的放射儀對其進行掃描檢查治療,這一切都是人通過系統(tǒng)輔助實現(xiàn)自動化。據(jù)報道:機器人位置控制系統(tǒng)通過對由呼吸運動而使腦部腫瘤位置的隨機變化進行分析,然后給予補償,這樣提高了CYBERKNIFE在手術過程中精確度和相對安全程度。</p><p><b

32、>  7. 結論</b></p><p>  隨著經(jīng)濟全球化的進程,新興技術大量涌現(xiàn)出來,但總的來看全球范圍內各種技術領域都存在著優(yōu)勢和弊端。這些問題不僅僅只存在于健康醫(yī)療領域,普遍存在于各行各業(yè),而醫(yī)療領域人們已經(jīng)受益非淺,但也提出了精確手術的新要求。盡管醫(yī)療服務的根本目的就是在于使病人更加健康,但由于經(jīng)濟因素的制約,使得醫(yī)療服務的管理問題上無法正常運作,不但沒有把基本的要求做好,甚至違背了醫(yī)

33、療服務的預期目的。所以這里我們要記住一點就是:病人所要的是得到最好的醫(yī)療方法,而不是僅僅是可能是最好的方法這種不確定的說法。</p><p>  現(xiàn)在的外科醫(yī)生急切希望了解各種有效外科新技術的詳細內容,因其內容能開闊他們的視野,還為他們的外科手術技巧和知識領域是個有效的補充。我們還必須付出更多的努力來解決有關軟件的兼容,圖像的配準,軟件策劃系統(tǒng)以及各種有效輔助系統(tǒng)的應用問題。理想情況下就是把所有的技術匯總到一起組

34、成一個綜合系統(tǒng),通過這個系統(tǒng)把病人體內的具體情況反饋,并把信息發(fā)送到這些有效的工具(如顯微鏡,立體定向機器人系統(tǒng),輔助設備,放射檢測儀等),而通過控制使這些設備對病人進行手術操作。</p><p>  即使這種技術能成功的應用與外科領域,機器人輔助系統(tǒng)也將不會完全取代和制約外科醫(yī)生;它們使得外科手術有了重大的改觀,機器人系統(tǒng)使得各種有效的輔助設備得到綜合的應用,使得在手術環(huán)境中各種儀器和諧統(tǒng)一的配合對病人實施手術

35、操作,這一切對于病人的手術后效果都是大大有利的。 </p><p><b>  附件2:外文原文:</b></p><p>  Intraoperative Robotics for the Practice of Surgery:</p><p>  A Surgeon's Perspective</p><p&g

36、t;  Alim Louis Benabid and Wieslaw Nowinski</p><p>  INTRODUCTION</p><p>  Since its inception, neurosurgery has continually distinguished itself as the most innovative field among surgical spec

37、ialties, possibly secondary to the inherently innovative nature of the organ system it serves. Driven by changes in patient needs, technological advances, and significant progress in our understanding of the neuroscience

38、s, neurosurgery has maintained an ever-changing face to the extent that, at times, even those within the field find it difficult to recognize. As with rapid chan</p><p>  The history of surgical tools follow

39、s a similar path and is far from being perfected. The introduction of novel tools into the operating room through the form of computer informatics, online radiology review, and intraoperative imaging has revolutionized b

40、oth the design and the ambience of the operating room. This, however, is only the beginning. Progress is more than the simple acquisition of vast amounts of highly sophisticated equipment and the teams of specialists req

41、uired to operate it. The</p><p>  PROGRESS OF MANKIND</p><p>  When Leonardo da Vinci constructed his revolutionary double-helix staircase in the Chambord Castle half a millenium ago, no one rec

42、ognized the importance the double-helix configuration would someday have in human life. In both microscopic and macroscopic scales, from DNA structure to the symbolism in human achievement, our progress along the spiral

43、curve has been enormous.</p><p>  Today's routine, however, must be done accurately, reproducibly, and cost effectively. Numerous aspects of the neurosurgeon's routine do not require exclusively huma

44、n effort. It is this realization that underlies our belief that robotic assistance has a valid role in the operating room. After 500 million years of biological evolution and 5 million years of social evolution, mankind

45、has created what Webster's Dictionary defines as "a mechanical device designed to do the work of human beings." The</p><p>  With technological progression comes both the intrinsic benefit prov

46、ided by the novel tools themselves and the increased complexity associated with them. In some cases, the complexity associated with novel tools may exceed the benefit of alleviating the problems for which they were desig

47、ned. </p><p>  Therefore, one of key questions which arises is: Are we going to keep on building these landmark-type de-vices, marking our progress on the human development helix, or shall we create new gene

48、ration tools that will reflect dynamically the status of human development, be a measure of progress of humanity, and separate the routine from the challenge?</p><p>  ROBOT VERSUS NEW TOOL</p><p&

49、gt;  Robotic systems were introduced to surgery in the early 1980s. Initial experimentation with surgical robotics consisted largely of adaptations on existing robot technology from the industrial sector. Humans and mach

50、ines are complementary, rather than competitive, with one another. Situations will exist in which humans are superior to machines and machines are superior to humans. Human superiority stems from qualities such as flexib

51、ility, adaptability, judgment, and hand-eye coordination. Human s</p><p>  The robot marks a single point on the spiral curve of human progress. Development of this new tool should be viewed as a reflection

52、of human development, a measure of human progress, and the ability to transform challenge into routine. We must shift our thinking from that of a device-oriented paradigm to a purpose-oriented paradigm. Advances in robot

53、 technology should not overlie an attitude of attempting to simply build the best machine possible. The goal should be to create a highly intelligen</p><p>  ROBOTS IN SURGERY</p><p>  Robots of

54、fer a wide array of benefits in the surgical arena. They increase the accuracy and dexterity of the surgeon, reduce the tremor of the human hand, and can amplify or reduce the movements and/or forces applied by the surge

55、on. The number and range of robotic applications in surgery are growing rapidly, and several classifications of robotic surgical systems have been proposed.222,77 However, few validated solutions are cur rently available

56、. When validating a robotic-assisted task, the key </p><p>  Robot-Assisted Tasks</p><p>  Typical surgical tasks being robotized include instrument positioning and micropositioning, trajectory

57、planning and precise needle insertion, free motion allowing the instrument to be arbitrarily positioned and oriented, motion in a constrained region, motion and force scaling, bone cutting, drilling, milling, and shaping

58、, and soft tissue cutting and destructing, among many other tasks.</p><p>  Positioning</p><p>  Robot-assisted positioning overcomes the human hand's tremor and fatigue. Physiological tremo

59、r is not an in-significant source of positioning error, as it can be as large as 50 µm peak to peak at the hand-held instrument tip. Robots developed for instrument positioning 。include NEUROMATE,8 (Figure 9.1) MINE

60、RVA,25,.30 and IMARL.78 Certain surgical maneuvers, such as microsurgery or stereotactic electrode placement, demand micropositioning with micrometer accuracy.32</p><p>  Precise Needle Insertion and Biopsy&

61、lt;/p><p>  A compact robotic system called MINI-RCM for precise needle insertion under surgical guidance is reported.71 Another needle insertion robotic device, known as PAKY, is currently available for interv

62、entional renal procedures." Several systems are available for robotic assistance with biopsies, 4.19.25.78 such as the NEUROMATE.</p><p>  Instrument Holding and Moving</p><p>  Tiresome an

63、d strenuous, but simple, tasks such as retractor fixation, light and camera positioning, and suction control are all easily robotized. Robot-assisted holding is also seen with ultrasonic probes, 61 cameras,74 x-ray sourc

64、es,14 and the recent CYBERKNIFE from Accurray2 (Figure 9.2). Some robots are designed for use with mutliple instruments. For example, PROBOT holds an ultrasonic probe or other vaporizing instruments, a cytoscope, or a vi

65、deo camera.54 One of the most established commerc</p><p>  Motion and Force Scaling</p><p>  Modern neurosurgery has reached a point where the scale of the operative field is so small that even

66、skilled surgeons are reaching the limits of their dexterity. Additionally novel treatments, such as intracellular inclusion of genomic subcellular implants used in transgenic technology, require an accuracy of 10 µm

67、. Currently, this technology is limited to animal models but if transposed to the operating room in human subjects, such precision would be attainable only through robotic assistance. </p><p>  Force Control

68、</p><p>  Force control is critical when performing tasks such as brain retraction. Continuous contact must be maintained without damaging the retracted tissue. 31,.61 Robotic re-traction may present a super

69、ior alternative to human retraction by minimizing the forces exerted on tissues. Force control is even more important when it comes to handling a delicate and fragile object: compromise has to be made between a firm grip

70、 to prevent fall of the object and softness to prevent from crushing it, as for a l</p><p>  Robot-Assisted Surgical Applications</p><p>  Robots are currently being employed in a wide ar ray of

71、 surgical subspecialties. Included are laparoscopy, orthopedics, craniofacial and maxillofacial surgery, microsurgery, radiosurgery, cardiaothoracic surgery, and neurosurgery.</p><p>  Laparoscopy</p>

72、<p>  LARS is a robotic system designed to assist surgeons in laparoscopic procedures with tasks such as camera holding and enhanced precision control of instruments.74 Other systems are also available in which sur

73、gical vision is robotically enhanced.39 Laparoscopic procedures in which robot assistance has been reported include cholecystectomies, hernia repairs, gastric procedures, and colectomies.26.79.80 A miniature robot capabl

74、e of propelling itself in a semiautonomous fashion along the lumen of th</p><p>  Orthopedics</p><p>  Several robots have been designed for use in orthopedic surgery. These include the ROBOTRAC

75、K,52 CRIGOS,12 and ROBODOC.73 ROBODOC enables the surgeon to plan the procedure preoperatively using computer-based imaging. Intraoperatively, the robotic arm, wielding a high-speed drill, creates a canal within the femu

76、r in which the implant is placed. Existing robot-assisted orthopedic applications include knee arthroplasty,25,53,60 total hip arthroplasty,6 revision of total hip arthroplasties,6,76 repai</p><p>  Microsur

77、gery</p><p>  Robots hold enormous potential for improving the field of microsurgery. The robot's ability to scale down force and motion to a level beyond that capable by humans may serve to open avenues

78、 for new surgical techniques and will refine existing ones. RAMS (Robot-Assisted MicroSurgery) is a robot system capable of scaling down surgeon hand motion and filtering out tremor.20 The end result is precision instrum

79、ent control in a manner far beyond that possible by. human dexterity alone. A second system</p><p>  Radiosurgery</p><p>  The CYBERKNIFE robotic system2 allows a linear accelerator to be arbitr

80、arily positioned in a 6 df orientation. Image-guided robotic radiosurgery utilizing a Fanuc manipulator has also been described.3 Robotic motion compensation for respiratory movement of extracranial tumor targets is repo

81、rted in the Cyberknife2 to offer significant improvements in the associated safety margin.68</p><p>  Conclusion</p><p>  Globalization, as mondialization, has advantages and drawbacks. This app

82、lies to various fields, including health care and, more precisely, surgery. The financial constraints are putting pressure on the management of health problems to the point that the main goal of medicine might be forgott

83、en or even more deviated to meet the budget demands, although the contrary should be the case. We must not forget the essence of things; that is, the patient must be treated in the best manner, not only in th</p>

84、<p>  Surgeons are waiting for available centralized information for various effectors, which are the extensions of their fingers, of their skills, and of their knowledge. There must be an increased effort toward co

85、mpatibility of softwares, image standards, planning softwares, and effectors. The ideal should be to have all image modalities converging in a unique planning system, from which various procedures could be dispatched tow

86、ard various effectors (microscope, stereotactic robot, tool holder, rad</p><p>  If this is achieved, robots at large will not replace or enslave surgeons; they will help them to achieve their transmutation

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論