外文翻譯--燃料電池概念車(節(jié)選)_第1頁
已閱讀1頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  1000單詞,1872漢字</p><p>  2. Revolution Fuel-Cell Vehicle</p><p>  The Revolution fuel-cell concept vehicle was developed internally by Hypercar to demonstrate the technical feasibility

2、and societal, consumer, and competitive benefits of holistic vehicle design focused on efficiency and lightweighting. It was designed to have breakthrough fuel economy and emissions, meet U.S. and European Motor Vehicle

3、Safety Standards, and meet a rigorous and complete set of product requirements for a sporty five-passenger SUV crossover vehicle market segment with technologies</p><p>  Figure 2: Photo of full-scale model

4、of Revolution and package layout drawings</p><p>  The Revolution combines lightweight, aerodynamic, and electrically and thermally efficient design with a hybridized fuel-cell propulsion system to deliver a

5、n unprecedented combination of features:</p><p>  ? Seats five adults with a package similar to the Lexus RX-300</p><p>  ? 1.95-m3 cargo space with the rear seats folded flat</p><p&g

6、t;  ? 2.38 L/100 km (42 km/L, 99 mpg) using compressed 345-bar gaseous hydrogen fuel</p><p>  ? 530-km range on 3.4 kg of hydrogen</p><p>  ? Zero tailpipe emissions</p><p>  ? Acce

7、lerates 0–100 km/h in 8.3 seconds</p><p>  ? No damage in impacts up to 10 km/h</p><p>  ? All-wheel drive with digital traction and vehicle stability control</p><p>  ? Ground clea

8、rance adjustable from 13–20 cm through a semi-active suspension that adapts to load, speed,</p><p>  location of the vehicle’s center of gravity, and terrain</p><p>  ? Body stiffness and torsio

9、nal rigidity 50% higher than premium sports sedans</p><p>  ? Designed for a 300,000+-km service life ? Modular electronics and software architecture and customizable user interface</p><p>  ? P

10、otential for the sticker price to be competitive with the Lexus RX300, Mercedes M320, and the BMW X5 3.0, with significantly lower lifecycle cost How is this achieved? Through careful whole-system design that integrates

11、several advanced technologies at once in synergistic ways. An overview of some of the technologies in the Revolution can be found in Figure</p><p>  3 and background information is available in [4, 5, 6, 7].

12、</p><p>  Figure 3: Technologies within the Revolution</p><p>  2.1 Lightweight design</p><p>  Every system in the Revolution is significantly lighter than conventional systems (Ta

13、ble 1 and Figure 4).</p><p>  Different techniques were used for each system to achieve such weight savings. The body structure achieved nearly 60% mass reduction versus steel by using a combination of carbo

14、n-fiber composites, aluminum, and unreinforced thermoplastic. Carbon-fiber composites were used in the passenger safety cell and in dedicated</p><p>  composite energy absorbing members. Aluminum was used pr

15、imarily in a front-end sub-frame, and unreinforced composite panels form the vehicle’s skin (Figure 5). The aluminum subframe and plastic skin are made with standard production techniques and will thus not be discussed i

16、n detail here.</p><p>  Table 1: Mass comparison of Revolution with a conventional benchmark vehicle</p><p>  Figure 4: Mass pie charts</p><p>  3. Composite Safety Cell Structural

17、Design</p><p>  The overarching challenge to using lightweight materials is cost-effectiveness. As carbon fiber composites cost significantly more per kilogram and per unit stiffness than steel, cost savings

18、 must be found in the structural design and manufacturing methods in order to make composites economically feasible. The design strategy that Hypercar employed was four-tiered: minimizing the total amount of material (an

19、d its corollary:</p><p>  ensuring most effective use of the material used) through concentrated, highly effective use whenever used;</p><p>  simplifying assembly, tooling, parts handling, inve

20、ntory, and processing costs through design; integrating as much functionality into the structure as was practical; and employing a novel manufacturing system for the fabrication of the individual parts. Several features

21、of the design that support this strategy are described below.</p><p>  3.1 Design features</p><p>  3.1.1 Part consolidation</p><p>  The primary structure is illustrated in Figures

22、 5 and 6. It is composed of fourteen major parts and 62 total parts—65% and 77% fewer parts than in the equivalent portion of a conventional stamped steel BIW, respectively. Each major part in the composite safety cell i

23、s joined using a patent-pending blade and clevis fully bonded joining technique that is strong, robust, and self-fixturing. Together, the small number of parts and the joint design simplify assembly, as just a few parts

24、must be held </p><p>  Figure 5: Composite structure, aluminum/composite front sub-frame, and exterior panels</p><p>  Figure 6: Composite safety cell exploded view</p><p>  3.1.2 M

25、aterial selection</p><p>  The materials used in the design of the passenger safety cell are predominantly intermediate modulus PANbased carbon fiber and low-viscosity nylon 12 laurolactam thermoplastic.<

26、/p><p>  To improve processability, long discontinuous fiber (LDF) carbon is used. Compared with continuous fiber, LDF allows greater formability of the part without crimping or buckling because the preform can

27、 stretch during processing. Yet the fibers are long enough to maintain near-continuous-fiber levels of stiffness in the final part.</p><p>  3.1.3 Part design</p><p>  Each part is designed for

28、low-cost fabrication and assembly. All parts exploit global complexity rather than including local complexity. For instance, while the components have complex surface geometry, the components are relatively shallow with

29、few sharp bends or deep draws, minimizing tooling cost, enhancing repeatability, and eliminating the need for labor-intensive pre- and post-process steps. Even though the geometry of each individual part is relatively si

30、mple, the parts combine to form a </p><p>  3.2 Structural analysis</p><p>  Both static structural and dynamic crash analyses were performed on the Revolution. The static analyses indicate a be

31、nding stiffness of 14,470 N/mm and a torsional stiffness of 38,490 N?m/deg—both figures greater than 50 % stiffer than premium sports sedans. In terms of crash performance, the Revolution relies on a combination of the e

32、nergy absorbing properties of aluminum and the strength of carbon composites to achieve levels of safety comparable to—and in many crash scenarios, exceeding—those</p><p>  Figure 7: 56-km/h fixed barrier fr

33、ont-end collision results</p><p>  2. Revolution燃料電池概念車</p><p>  Revolution燃料電池概念車是由Hypercar內(nèi)部研發(fā)來證明注重效率和輕便的整體汽車設計所帶來的技術上的可行性和社會,消費,有競爭力的效益。它被設計出來在燃油經(jīng)濟性和尾氣排放方面尋求突破,符合美國和歐洲機動車輛安全標準,同時也滿足嚴謹?shù)某商椎漠a(chǎn)品要

34、求,即容納5個乘客的運動型的擁有在5年內(nèi)能夠以有競爭力的成本量產(chǎn)的技術的汽車細分市場。(圖2)</p><p><b>  .</b></p><p>  圖2:Revolution實體模型和包裝布局圖</p><p>  Revolution結合了集輕便,熱空氣動力,電力和化氫燃料電池推進系統(tǒng)于一體的有效設計來傳遞史無前例的組合式功能:<

35、;/p><p>  ? 擁有與Lexus RX-300相近包裝的5個成人座位</p><p>  ? 1.95平方米擁有折疊式后座的貨倉</p><p>  ? 2.38L/100km(42km/L,99mpg)用壓縮 345-bar氣態(tài)氫燃料</p><p>  ? 3.4公斤的氫的范圍</p><p>  ?

36、 汽車排氣管零排放</p><p>  ? 8.3秒內(nèi)加速0到100km/h</p><p>  ? 車身在10km/h內(nèi)的沖擊碰撞沒有損壞</p><p>  ? 數(shù)碼牽引力和車輛穩(wěn)定性控制的四輪驅動</p><p>  ? 地面間隙通過半懸架系統(tǒng)可以從13cm調到20cm,以適應負重,速度和車輛的重心和地形的位置</p>

37、;<p>  ? 車身強度和扭轉剛度比優(yōu)質的運動型轎車高50% </p><p>  ? 專為300000km 使用壽命的設計</p><p>  ? 模塊化的電子產(chǎn)品和軟件體系結構和坎坷定制的用戶界面</p><p>  ? 具有能夠和雷克薩斯 RX300,奔馳 M320,寶馬X53.0有競爭力價格的潛質,同時具有明顯低的生命周期成本<

38、/p><p>  這是怎樣做到的呢?在協(xié)同的方式下通過立即集成幾個先進技術的精心的系統(tǒng)設計。</p><p>  Revolution中的一些技術概述可以在圖3和圖4,5,6,7的可用背景資料中被找到。</p><p>  圖3:Revolution中的技術</p><p><b>  2.1 設計輕巧</b></p&

39、gt;<p>  Revolution的每個系統(tǒng)比傳統(tǒng)的系統(tǒng)明顯輕巧多了。為了降低車身重量,從而采用了不同的技術。車身結構減少了近60%的剛凈重,因為采用了碳素纖維復合材料,鋁和加強熱塑性塑料的結合體。碳素纖維復合材料用于乘客安全室和專用復合材料能量吸收葉輪,鋁主要用于前端框架和車輛皮膚的加強復合板。鋁的副框架和塑料皮膚使用標準生產(chǎn)技術,因此在這里就不詳細討論。</p><p>  表一:Revol

40、ution和常規(guī)基準車輛的大量比較</p><p><b>  圖4: 質量餅圖</b></p><p>  3. 復合材料安全室結構設計</p><p>  使用輕質材料最大的挑戰(zhàn)就是成本效益。由于碳素纖維復合材料每千克的成本和單位強度都比鋼明顯高的多,所以必須從結構設計和制造方法中來降低成本從而使得復合材料經(jīng)濟可行。Hypercar提出的設

41、計戰(zhàn)主要略涵蓋4層:材料總質量最小化,單位材料最大效益化(其推論即:確保使用到的材料產(chǎn)生最大效益)簡化設計過程中的組裝,工裝,零件處理,庫存,成本工藝各環(huán)節(jié)</p><p>  盡可能多的將實用性功能加入到汽車結構中④引進個別零件制造的新型制造系統(tǒng)</p><p>  支持這項戰(zhàn)略的設計的其他一些特點將在下面描述。</p><p><b>  3.1 設計

42、特點</b></p><p>  3.1.1 零件加固</p><p>  汽車的主要結構就如圖5,圖6描述的。它是由14個主要零件和總的62個部件——相比于同等比例下的傳統(tǒng)的沖壓鋼BIW分別只用了65%和77%的部件。Revolution中的每個主要部分共同使用一個專利未決的葉片和結合了強大的,穩(wěn)健的,自帶夾具的技術的連接叉。同時,一小部分的部件和共同的設計簡化了組裝,比如只

43、是一部分零件必須保持在一起直到粘合劑粘結,不需要復雜的檢具。</p><p>  圖 5: 復合材料的復合結構,鋁質/復合材料前副框和外板</p><p>  圖6:復合材料安全室的開發(fā)觀點</p><p>  3.1.2 材料選擇</p><p>  乘客安全單元設計中所使用的材料的中間體是以碳素纖維和低粘度尼龍熱塑性材料。為了提高工藝性

44、,材料使用不連續(xù)纖維的碳素材料。跟連續(xù)纖維的碳素材料相比,LCD能夠為零件提供更好的成形性,而沒有蜷曲和屈曲,因為在工藝流程中預制品可以拉伸。因此,纖維足夠長到維持最后部分的鋼的強度的連續(xù)纖維等級</p><p>  3.1.3 零件設計</p><p>  每個零件是在低成本制造和組裝下設計的。所有零件利用的是整體復雜性而不是局部復雜性。比如:當部件具有表面幾何圖形,這些組件較深較淺的有

45、一些尖銳的折彎和繪畫,最小化的加工成本,可重復性頻率的提高和勞動密集型的售前和成型件的過程的加快。</p><p>  盡管每個獨立零件的幾何尺寸相對簡單,但是所有部件要結合成一個擁有所有必需的復雜度和幾何尺寸的完整結構。</p><p><b>  3.2 結構分析</b></p><p>  對Revolution執(zhí)行包括靜態(tài)結構和動態(tài)結構

46、在內(nèi)的分析。靜態(tài)分析顯示了14470 N/mm的抗彎剛度和38,490 N?m/deg扭轉剛度——兩組數(shù)據(jù)都比優(yōu)質運動轎車的強度高出50%。從碰撞性能角度看,Revolution依靠鋁的能量吸收特質和碳素復合材料的強度來取得相當?shù)陌踩?,在許多失事中,很多就是質量較重的車輛。比如,在前端的碰撞中,計算機分析表明Revolution能夠優(yōu)于美國聯(lián)邦機動車安全標準(FMVSS)規(guī)定的固定障礙碰撞時速應該達到48-km/h甚至加速到56 k

47、m/h。此外,前端在56 km/h時速碰撞所造成的損壞應該包括鋁質前副框而不是碳素纖維安全室的任何損害,能夠在沖撞后便于乘客逃脫和簡化維修。在一次迎頭而來的汽車沖撞最大相當于其兩倍的質量,各個時速達48-km/h,Revolution就是被設計出來滿足FMVSS 48-km/迎頭固定障礙標準。因此,Revolution的碰撞結構會成功的吸收它在迎頭相撞產(chǎn)生而轉移的額外動能,那是由于相對于其碰撞伙伴的輕巧度沒有危機乘客的安全。</p

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論