版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> Review of UMTS</p><p> 1.1 UMTS Network Architecture </p><p> The European/Japanese 3G standard is referred to as UMTS. UMTS is one of a number of standards ratified by the ITU-T un
2、der the umbrella of IMT-2000. It is currently the dominant standard, with the US CDMA2000 standard gaining ground, particularly with operators that have deployed cdmaOne as their 2G technology. At time of writing,Japan i
3、s the most advanced in terms of 3G network deployment. The three incumbent operators there have implemented three different technologies: J-Phone is using UMTS,K</p><p> The UMTS standard is specified as a
4、migration from the second generation GSM standard to UMTS via the General Packet Radio System (GPRS) and Enhanced Data for Global Evolution (EDGE), as shown in Figure. This is a sound rationale since as of April 2003, th
5、ere were over 847 Million GSM subscribers worldwide1, accounting for</p><p> 68% of the global cellular subscriber figures. The emphasis is on keeping as much of the GSM network as possible to operate with
6、the new system.</p><p> We are now well on the road towards Third Generation (3G), where the network will support all traffic types: voice, video and data, and we should see an eventual explosion in the ser
7、vices available on the mobile device. The driving technology for this is the IP protocol. Many cellular operators are now at a position referred to as 2.5G, with the deployment of GPRS, which introduces an IP backbone in
8、to the mobile core network.The diagram below, Figure 2, shows an overview of the key components in</p><p> The interface between the SGSN and GGSN is known as the Gn interface and uses the GPRS tunneling pr
9、otocol (GTP, discussed later). The primary reason for the introduction of this infrastructure is to offer connections to external packet networks, such as the Internet or a corporate Intranet.</p><p> This
10、brings the IP protocol into the network as a transport between the SGSN and GGSN. This allows data services such as email or web browsing on the mobile device,with users being charged based on volume of data rather than
11、time connected.</p><p> The dominant standard for delivery of 3G networks and services is the Universal Mobile Telecommunications System, or UMTS. The first deployment of UMTS is the Release ’99 architectur
12、e, shown below in Figure 3.</p><p> In this network, the major change is in the radio access network (RAN) with the introduction of CDMA technology for the air interface, and ATM as a transport in the trans
13、mission part. These changes have been introduced principally to support the transport of voice, video and data services on the same network. The core network remains relatively unchanged, with primarily software upgrades
14、. However, the IP protocol pushes further into the network with the RNC now communicating with the 3G SGSN us</p><p> The next evolution step is the Release 4 architecture, Figure 4. Here, the GSM core is
15、replaced with an IP network infrastructure based around Voice over IP technology.</p><p> The MSC evolves into two separate components: a Media Gateway (MGW) and an MSC Server (MSS). This essentially breaks
16、 apart the roles of connection and connection control. An MSS can handle multiple MGWs, making the network more scaleable.</p><p> Since there are now a number of IP clouds in the 3G network, it makes sense
17、 to merge these together into one IP or IP/ATM backbone (it is likely both options will be available to operators.) This extends IP right across the whole network, all the way to the BTS.This is referred to as the All-IP
18、 network, or the Release 5 architecture, as shown in Figure 5. The HLR/VLR/EIR are generalised and referred to as the HLR Subsystem(HSS).</p><p> Now the last remnants of traditional telecommunications swit
19、ching are removed, leaving a network operating completely on the IP protocol, and generalised for the transport of many service types. Real-time services are supported through the introduction of a new network domain, th
20、e IP Multimedia Subsystem (IMS).</p><p> Currently the 3GPP are working on Release 6, which purports to cover all aspects not addressed in frozen releases. Some call UMTS Release 6 4G and it includes such i
21、ssues as interworking of hot spot radio access technologies such as wireless LAN1.2 UMTS FDD and TDD</p><p> Like any CDMA system, UMTS needs a wide frequency band in which to operate to effectively spread
22、signals. The defining characteristic of the system is the chip rate, where a chip is the width of one symbol of the CDMA code. UMTS uses a chip rate of 3.84Mchips/s and this converts to a required spectrum carrier of 5MH
23、z wide. Since this is wider than the 1.25MHz needed for the existing cdmaOne system, the UMTS air interface is termed ‘wideband’ CDMA.</p><p> There are actually two radio technologies under the UMTS umbrel
24、la: UMTS FDD and TDD. FDD stands for Frequency Division Duplex, and like GSM, separates traffic in the uplink and downlink by placing them at different frequency channels. Therefore an operator must have a pair of freque
25、ncies allocated to allow them to run a network, hence the term ‘paired spectrum’. TDD or Time Division Duplex requires only one frequency channel, and uplink and downlink traffic are separated by sending them at diffe<
26、;/p><p> The Time Division Duplex (TDD) system, which needs only one 5MHz band in which to operate, often referred to as unpaired spectrum. The differences between UMTS FDD and TDD are only evident at the lowe
27、r layers, particularly on the radio interface. At higher layers, the bulk of the operation of the two systems is the same. As the name suggests, the TDD system separates uplink and downlink traffic by placing them in dif
28、ferent time slots. As will be seen later, UMTS uses a 10ms frame structure which</p><p> The TDD system should not really be considered as an independent network, but rather as a supplement for an FDD syste
29、m to provide hotspot coverage at higher data rates. It is rather unsuitable for large scale deployment due to interference between sites, since a BTS may be trying to detect a weak signal from a UE, which is blocked out
30、by a relatively strong signal at the same frequency from a nearby BTS. TDD is ideal for indoor coverage over small areas.</p><p> Since FDD is the main access technology being developed currently, the expla
31、nations presented here will focus purely on this system.</p><p> 1.3 UMTS Bearer Model</p><p> The procedures of a mobile device connecting to a UMTS network can be split into two areas: the a
32、ccess stratum (AS) and the non-access stratum (NAS). The access stratum involves all the layers and subsystems that offer general services to the non-access stratum. In UMTS, the access stratum consists of all of the ele
33、ments in the radio access network, including the underlying ATM transport network, and the various mechanisms such as those to provide reliable information exchange. All of the non-ac</p><p> UMTS radio acc
34、ess network (UTRAN) provides this separation of NAS and AS functions, and allows for AS functions to be fully controlled and implemented within the UTRAN. The two major UTRAN interfaces are the Uu, which is the interface
35、 between the mobile device, or User Equipment (UE) and the UTRAN, and the Iu, which is the interface between the UTRAN and the core network. Both of these interfaces can be divided into control and user planes each with
36、appropriate protocol functions.</p><p> A Bearer Service is a link between two points, which is defined by a certain set of characteristics. In the case of UMTS, the bearer service is delivered using radio
37、access bearers.</p><p> A Radio access bearer (RAB) is defined as the service that the access stratum (i.e.UTRAN) provides to the non-access stratum for transfer of user data between the User Equipment and
38、Core Network. A RAB can consist of a number of subflows, which are data streams to the core network within the RAB that have different QoS characteristics,such as different reliabilities. A common example of this is diff
39、erent classes of bits with different bit error rates can be realised as different RAB subflows. RA</p><p> A Radio Link is defined as a logical association between a single User Equipment (UE) and a single
40、UTRAN access point, such as an RNC. It is physically comprised of one or more radio bearers and should not be confused with radio access bearer.</p><p> Looking within the UTRAN, the general architecture mo
41、del is as shown in Figure 8 below. Now shown are the Node B or Base Station (BTS) and Radio Network Controller (RNC) components, and their respective internal interfaces. The UTRAN is subdivided into blocks referred to a
42、s Radio Network Subsystems (RNS), where each RNS consists of one controlling RNC (CRNC) and all the BTSs under its control. Unique to UMTS is the interface between RNSs, the Iur interface, which plays a key role in hando
43、ver pro</p><p> All the ‘I’ interfaces: Iu, Iur and Iub, currently3 use ATM as a transport layer. In the context of ATM, the BTS is seen as a host accessing an ATM network, within which the RNC is an ATM sw
44、itch. Therefore, the Iub is a UNI interface, whereas the Iu and Iur interfaces are considered to be NNI, as illustrated in Figure 9.</p><p> This distinction is because the BTS to RNC link is a point-to-poi
45、nt connection in that a BTS or RNC will only communicate with the RNC or BTS directly connected to it, and will not require communication beyond that element to another network element.</p><p> For each use
46、r connection to the core network, there is only one RNC, which maintains the link between the UE and core network domain, as highlighted in Figure 10. This RNC is referred to as the serving RNC or SRNC. That SRNC plus th
47、e BTSs under its control is then referred to as the SRNS. This is a logical definition with reference to that UE only. In an RNS, the RNC that controls a BTS is known as the controlling RNC or CRNC. This is with referenc
48、e to the BTS, cells under its control and all th</p><p> As the UE moves, it may perform a soft or hard handover to another cell. In the case of a soft handover, the SRNC will activate the new connection to
49、 the new BTS. Should the new BTS be under the control of another RNC, the SRNC will also alert this new RNC to activate a connection along the Iur interface. The UE now has two links, one directly to the SRNC, and the se
50、cond, through the new RNC along the Iur interface. In this case, this new RNC is logically referred to as a drift RNC or DRNC, see </p><p> A situation may arise where a UE is connected to a BTS for which t
51、he SRNC is not the CRNC for that BTS. In that situation, the network may invoke the Serving RNC Relocation procedure to move the core network connection. This process is described inSection 3.</p><p> 通用移動通
52、信系統(tǒng)的回顧</p><p> 1.1 UMTS網(wǎng)絡(luò)架構(gòu)</p><p> 歐洲/日本的3G標(biāo)準(zhǔn),被稱為UMTS。UMTS是一個在IMT-2000保護(hù)傘下的ITU-T批準(zhǔn)的許多標(biāo)準(zhǔn)之一。隨著美國的CDMA2000標(biāo)準(zhǔn)的發(fā)展,它是目前占主導(dǎo)地位的標(biāo)準(zhǔn),特別是運(yùn)營商將cdmaOne部署為他們的2G技術(shù)。在寫這本書時,日本是在3G網(wǎng)絡(luò)部署方面最先進(jìn)的。三名現(xiàn)任運(yùn)營商已經(jīng)實(shí)施了三個不同的技術(shù):
53、J - PHONE使用UMTS,KDDI擁有CDMA2000網(wǎng)絡(luò),最大的運(yùn)營商N(yùn)TT DoCoMo正在使用品牌的FOMA(自由多媒體接入)系統(tǒng)。 FOMA是基于原來的UMTS協(xié)議,而且更加的協(xié)調(diào)和標(biāo)準(zhǔn)化。</p><p> UMTS標(biāo)準(zhǔn)被定義為一個通過通用分組無線系統(tǒng)(GPRS)和全球演進(jìn)的增強(qiáng)數(shù)據(jù)技術(shù)(EDGE)從第二代GSM標(biāo)準(zhǔn)到UNTS的遷移。這是一個廣泛應(yīng)用的基本原理,因?yàn)樽?003年4月起,全球有超過
54、847萬GSM用戶,占全球的移動用戶數(shù)字的68%。重點(diǎn)是在保持盡可能多的GSM網(wǎng)絡(luò)與新系統(tǒng)的操作。</p><p> 我們現(xiàn)在在第三代(3G)的發(fā)展道路上,其中網(wǎng)絡(luò)將支持所有類型的流量:語音,視頻和數(shù)據(jù),我們應(yīng)該看到一個最終的爆炸在移動設(shè)備上的可用服務(wù)。此驅(qū)動技術(shù)是IP協(xié)議?,F(xiàn)在,許多移動運(yùn)營商在簡稱為2.5G的位置,伴隨GPRS的部署,即將IP骨干網(wǎng)引入到移動核心網(wǎng)。</p><p>
55、 SGSN和GGSN之間的接口被稱為Gn接口和使用GPRS隧道協(xié)議(GTP的,稍后討論)。引進(jìn)這種基礎(chǔ)設(shè)施的首要原因是提供連接到外部分組網(wǎng)絡(luò)如,Internet或企業(yè)Intranet。這使IP協(xié)議作為SGSN和GGSN之間的運(yùn)輸工具應(yīng)用到網(wǎng)絡(luò)。這使得數(shù)據(jù)服務(wù),如移動設(shè)備上的電子郵件或?yàn)g覽網(wǎng)頁,用戶被起訴基于數(shù)據(jù)流量,而不是時間連接基礎(chǔ)上的數(shù)據(jù)量。3G網(wǎng)絡(luò)和服務(wù)交付的主要標(biāo)準(zhǔn)是通用移動通信系統(tǒng),或UMTS。首次部署的UMTS是發(fā)行
56、9;99架構(gòu)。</p><p> 在這個網(wǎng)絡(luò)中,主要的變化是在無線接入網(wǎng)絡(luò)(RAN的)CDMA空中接口技術(shù)的引進(jìn),和在傳輸部分異步傳輸模式作為一種傳輸方式。這些變化已經(jīng)引入,主要是為了支持在同一網(wǎng)絡(luò)上的語音,視頻和數(shù)據(jù)服務(wù)的運(yùn)輸。核心網(wǎng)絡(luò)保持相對不變,主要是軟件升級。然而,隨著目前無線網(wǎng)絡(luò)控制器使用IP與3G的GPRS業(yè)務(wù)支持節(jié)點(diǎn)進(jìn)行通信,IP協(xié)議進(jìn)一步應(yīng)用到網(wǎng)絡(luò)。</p><p>
57、未來的進(jìn)化步驟是第4版架構(gòu)。在這里,GSM的核心被以語音IP技術(shù)為基礎(chǔ)的IP網(wǎng)絡(luò)基礎(chǔ)設(shè)施取代。</p><p> 海安的發(fā)展分為兩個獨(dú)立部分:媒體網(wǎng)關(guān)(MGW)和MSC服務(wù)器(MSS)的。這基本上是打破外連接的作用和連接控制。一個MSS可以處理多個MGW,使網(wǎng)絡(luò)更具有擴(kuò)展性。</p><p> 因?yàn)楝F(xiàn)在有一些在3G網(wǎng)絡(luò)的IP云,合并這些到一個IP或IP/ ATM骨干網(wǎng)是很有意義的(它很
58、可能會提供兩種選擇運(yùn)營商)。這使IP權(quán)利拓展到整個網(wǎng)絡(luò),一直到BTS(基站收發(fā)信臺)。這被稱為全I(xiàn)P網(wǎng)絡(luò),或推出五架構(gòu),如圖五所示。在HLR/ VLR/VLR/EIR被推廣和稱為HLR的子系統(tǒng)(HSS)。</p><p> 現(xiàn)在傳統(tǒng)的電信交換的最后殘余被刪除,留下完全基于IP協(xié)議的網(wǎng)絡(luò)運(yùn)營,并推廣了許多服務(wù)類型的運(yùn)輸。實(shí)時服務(wù)通過引入一個新的網(wǎng)絡(luò)域名得到支持,即IP多媒體子系統(tǒng)(IMS)。</p>
59、<p> 目前3GPP作用于第6版,意在包含冷凍版本沒有涵蓋所有方面。有些人稱UMTS 第6版為4G和它包括熱點(diǎn)無線電接入技術(shù),如無線局域網(wǎng)互聯(lián)互通的問題。</p><p> 1.2 UMTS的FDD和TDD</p><p> 像任何CDMA系統(tǒng),UMTS需要一個寬的頻帶,在這個頻帶上有效地傳播信號。該系統(tǒng)的特點(diǎn)是芯片的速度,芯片是一個符號的CDMA代碼的寬度。 UMTS
60、使用的芯片速率為3.84Mchips/秒,這轉(zhuǎn)換到所需的頻譜載波寬度為5MHz。由于這比現(xiàn)有的cdmaOne系統(tǒng)所需的1.25MHz帶寬要寬,UNTS空中接口被稱為“寬帶”CDMA.</p><p> 實(shí)際上在UMTS下有兩個無線電技術(shù):UMTS軟盤驅(qū)動器和時分雙工。FDD代表頻分雙工,如GSM,通過把它們放置在不同的頻率信道分離為交通上行和下行。因此,一個運(yùn)營商必須有一對頻率分配,使他們能夠運(yùn)行網(wǎng)絡(luò),即術(shù)語成
61、對頻譜。TDD或時分雙工只需要一個頻率通道,上行和下行流量是在不同的時間分開發(fā)送。 ITU-T的頻譜使用。對于FDD是1920 - 1980MHz的為上行流量,2110-2170MHz為下行的。運(yùn)營商需要的最小分配是兩個成對5MHz的信道,一個用于上行,一個用于下行的,兩者相分離190MHz。然而,為了給客戶提供全面的覆蓋和服務(wù),建議給予每個運(yùn)營商三個信道??紤]到頻譜分配,有12對可用的渠道,現(xiàn)在許多國家都完成了這個頻譜的許可過程,每個
62、許可證配置兩個到四個信道。這趨向給運(yùn)營商造成一個昂貴的花費(fèi),因?yàn)橐恍﹪业谋O(jiān)管部門,特別是在歐洲,已經(jīng)將這些許可證拍賣給出價最高的人。這就造成了頻譜費(fèi)用在一些國家高達(dá)數(shù)十億美元。</p><p> 時分雙工(TDD)系統(tǒng),只需要一個5MHz的帶寬在其中操作,通常被稱為非成對頻譜。UMTS FDD和TDD之間的差異只有在較低層明顯,特別是在無線接口。在更高的層次,兩個系統(tǒng)的運(yùn)作大部分是相同的。正如它的名字表明,T
63、DD系統(tǒng)通過把它們放置在不同的時間空擋分為上行流量和下行流量。正如我們以后可以看到的, UMTS使用一個分為15個相等的時隙的10ms幀結(jié)構(gòu)。 時分雙工可以分配這些為上行或下行,在一個確定的幀結(jié)構(gòu)中這兩者間可以有一個或多個斷點(diǎn)。以這種方式,這是非常適合數(shù)據(jù)包通信的,因?yàn)檫@對于不對稱的通信流的動態(tài)標(biāo)注可以有極大的靈活性。</p><p> TDD系統(tǒng)真的不應(yīng)該被視為一個獨(dú)立的網(wǎng)絡(luò),而是作為一個FDD系統(tǒng)的補(bǔ)充,提
64、供更高的數(shù)據(jù)傳輸率的熱點(diǎn)覆蓋。由于站點(diǎn)之間的干擾,它相當(dāng)不合適用作大規(guī)模部署,因?yàn)橐粋€基站可以嘗試從UE檢測微弱信號,這被來自鄰近基站的相同頻率的相對較強(qiáng)的信號阻止了。 時分雙工對于小面積的室內(nèi)覆蓋是理想的。</p><p> 由于FDD是目前正在發(fā)展的主要的接入技術(shù),這里介紹的解釋將完全專注于這個系統(tǒng)。</p><p> 1.3 UMTS承載模型</p><p&g
65、t; 移動設(shè)備連接到UMTS網(wǎng)絡(luò)的程序可以分成兩領(lǐng)域:接入層(AS)和非接入層(NAS)。接入層涉及所有提供普遍服務(wù)的非接入層和子系統(tǒng)階層。在UMTS接入層包括無線接入的所有元素網(wǎng)絡(luò),包括潛在的ATM傳輸網(wǎng)絡(luò),各種機(jī)制提供可靠的信息交換等。所有的非接入層功能都在移動設(shè)備和核心網(wǎng)絡(luò)之間,例如,移動性管理。圖7顯示了結(jié)構(gòu)模型。AS通過使用服務(wù)接入點(diǎn)(SAPS)與NAS交互。</p><p> UMTS無線接入網(wǎng)(
66、UTRAN)提供NAS和AS功能的分離,并允許AS功能在UTRAN中被完全控制和實(shí)施。兩大UTRAN的接口是UU,這是移動設(shè)備之間的接口,或者用戶設(shè)備(UE)和UTRAN之間,Iu,這是UTRAN和核心網(wǎng)之間的接口。這些接口都可以分為控制平面和用戶平面,每個都有適當(dāng)?shù)膮f(xié)議功能。承載服務(wù)是兩點(diǎn)間的連接,這是由一組特定的特點(diǎn)定義的。在UMTS的情況下,使用無線接入承載提供承載服務(wù)。</p><p> 無線接入承載(
67、RAB)被定義為用戶設(shè)備和核心網(wǎng)絡(luò)之間的服務(wù),即接入層(ieUTRAN)為非接入層提供用戶數(shù)據(jù)傳輸。一個RAB可以由一些支流組成,這是數(shù)據(jù)流在有不同的QoS特性的RAB流向核心網(wǎng)絡(luò),如不同的可靠性。一個常見的例子是不同類別的位有不同的位錯誤率,可以實(shí)現(xiàn)不同的RAB子流。RAB子流在RAB建立和釋放的同時建立和釋放,并通過相同的傳輸承載一起傳輸。</p><p> 無線電鏈路被定義為一個單一的用戶設(shè)備(UE)和一
68、個單一的UTRAN接入點(diǎn)之間的邏輯關(guān)聯(lián),如一個RNC。它實(shí)際上是由一個或多個無線承載組成和不應(yīng)和無線接入承載混淆。</p><p> 在UTRAN內(nèi)部來看,總體架構(gòu)模型在下面的圖8所示?,F(xiàn)在顯示的是節(jié)點(diǎn)B基站(BTS)和無線網(wǎng)絡(luò)控制器(RNC)組件,以及它們各自的內(nèi)部接口。UTRAN分為被稱為無線網(wǎng)絡(luò)子系統(tǒng)(RNS)的塊,其中每個RNS由一個控制RNC和控制下的所有基站組成。UMTS的獨(dú)特之處是RNS之間的接口
69、,Iur接口,在交接過程起了關(guān)鍵作用?;竞蚏NC之間的接口是Iub接口。</p><p> 所有“I”接口:Iu,Iur和Iub,currently3將ATM用作傳輸層。在ATM的背景下,BTS被看作是ATM網(wǎng)絡(luò)的主機(jī)訪問,在這個網(wǎng)絡(luò)中RNC是一個ATM交換機(jī)。因此,Iub是一個UNI接口,而Iu和Iur接口被認(rèn)為是NNI。</p><p> 這種區(qū)別是因?yàn)榛镜絉NC的鏈接是一個點(diǎn)
70、至點(diǎn)連接,在這個連接中一個基站或RNC只和與它直接連接的RNC或基站通信,并且不會要求和其他網(wǎng)絡(luò)元素的元素。</p><p> 對于每個用戶連接到核心網(wǎng)絡(luò),這里只有一個RNC,保持UE和核心網(wǎng)域之間的聯(lián)系。RNC是指服務(wù)RNC或SRNC。SRNC加上在其控制下的基站被稱為SRNS。這是一個只以UE為參考的邏輯定義。在一個RNS中,控制基站的RNC被稱為控制RNC或CRNC。這是以基站為參考,其控制下的部分和所有
71、常見的和共享的渠道內(nèi)。</p><p> 因?yàn)閁E移動,它可能執(zhí)行軟或硬切換到另一個蜂窩。在軟切換的情況下,SRNC將啟動新的連接到新的基站。新的基站應(yīng)該是在另一個RNC控制下,SRNC中也會提醒這個新的RNC啟動沿Iur接口連接。UE現(xiàn)在有兩個連接,一個直接連接SRNC,第二個通過新的RNC連接Iur接口。在這種情況下,這個新的RNC在邏輯上被稱為漂移RNC或DRNC。它不涉及任何呼叫處理,只是將它中繼到SR
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 通信工程畢業(yè)設(shè)計(jì)外文翻譯--通用移動通信系統(tǒng)的回顧
- gps通信系統(tǒng)外文翻譯---全球移動通信系統(tǒng)
- 外文翻譯--移動通信
- 外文翻譯--移動通信
- 現(xiàn)代移動通信外文翻譯
- 通信類外文文獻(xiàn)翻譯-gsm移動通信系統(tǒng)綜述
- 通用移動通信系統(tǒng)的業(yè)務(wù)質(zhì)量
- jit看板系統(tǒng)的文獻(xiàn)回顧外文翻譯
- 外文翻譯--lte升級版移動通信系統(tǒng)的載波聚合技術(shù)
- 移動通信相關(guān)畢業(yè)設(shè)計(jì)外文翻譯
- 外文翻譯--lte升級版移動通信系統(tǒng)的載波聚合技術(shù)
- 外文翻譯--lte升級版移動通信系統(tǒng)的載波聚合技術(shù)
- 外文翻譯--通信系統(tǒng)簡介
- 外文翻譯--通信系統(tǒng)簡介
- 外文翻譯--lte升級版移動通信系統(tǒng)的載波聚合技術(shù)(原文)
- 外文翻譯--lte升級版移動通信系統(tǒng)的載波聚合技術(shù)(譯文)
- 通信工程外文翻譯--移動通信3g技術(shù)分析
- 碼分多址通信系統(tǒng)、擴(kuò)頻通信外文翻譯
- 外文翻譯--LTE升級版移動通信系統(tǒng)的載波聚合技術(shù)(譯文).doc
- 外文翻譯--移動通信在多功能遠(yuǎn)程醫(yī)療保健系統(tǒng)中的應(yīng)用
評論
0/150
提交評論