外文翻譯---基于lms自適應(yīng)濾波器在直達(dá)波消除中的運(yùn)用_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  外文翻譯</b></p><p>  學(xué)生姓名 </p><p>  學(xué) 號(hào) 20071305129</p><p>  院 系 電子與信息工程</p><p>  專 業(yè) 電子信息工程</p><p&g

2、t;  指導(dǎo)教師 </p><p>  二O一一 年 六 月 二 日</p><p>  基于LMS自適應(yīng)濾波器在直達(dá)波消除中的運(yùn)用</p><p>  徐元軍,陶源,王越,單濤</p><p>  電子工程系,信息科學(xué)與技術(shù)學(xué)院,北京理工大學(xué),北京100081,中國</p><p>  摘要:本

3、文介紹了使用最小均方(LMS)算法消除無源雷達(dá)收到的直達(dá)波。并由此推導(dǎo)出直達(dá)波的模型。通過使用基于LMS算法的FIR自適應(yīng)濾波器,從而開發(fā)出來調(diào)頻無源雷達(dá)的軟件解決方案,從而代替了利用硬件對(duì)無源雷達(dá)的調(diào)試。由此我們獲得的一些無源雷達(dá)的仿真結(jié)果。這些仿真結(jié)果預(yù)示著利用LMS算法消除直達(dá)波是十分有效的。</p><p>  關(guān)鍵字:LMS算法;自適應(yīng)濾波器;直達(dá)波消除;</p><p>  在

4、以往的雷達(dá)系統(tǒng)的研究中,大多數(shù)的雷達(dá)專家都曾經(jīng)專注于無源雷達(dá)系統(tǒng),但是只是把它當(dāng)做只用作為商業(yè)電臺(tái)的廣播電臺(tái)發(fā)射器,比如電視和GSM發(fā)射機(jī)等。而這種無源雷達(dá)系統(tǒng)的其他的一些潛在運(yùn)用僅僅只是在一些實(shí)驗(yàn)[1]中被介紹.無源雷達(dá)系統(tǒng)通常包括一個(gè)參考接收器和一個(gè)回波接收器。在實(shí)際中,無源雷達(dá)的回波接收器通常不僅收到目標(biāo)的回波,而且也接收到由于多徑傳播效應(yīng)而產(chǎn)生的回波。由于在實(shí)際中的雷達(dá)的橫截面(RCS)的目標(biāo)通常是非常小的,與多徑傳播效應(yīng)而產(chǎn)生

5、的回波相比,目標(biāo)的回波是非常微弱的,這使得檢測(cè)信號(hào)變得十分困難。這就是為什么在這種情況下,實(shí)現(xiàn)目標(biāo)的檢測(cè)成為一項(xiàng)極其艱巨的任務(wù)。在實(shí)際中,無源雷達(dá)設(shè)備使用了各種各樣的不同方案來解決這個(gè)問題[2][3]。但是這些方法都需要添加特殊的硬件才能夠?qū)崿F(xiàn)直達(dá)波的消除。為了解決這個(gè)問題,現(xiàn)在我們可以采用軟件的方法來實(shí)現(xiàn)直達(dá)波的消除。</p><p>  在過去幾十年的濾波器理論研究中,自適應(yīng)信號(hào)處理經(jīng)過不斷的發(fā)展已經(jīng)成為了現(xiàn)

6、在研究的熱門領(lǐng)域之一。越來越多的自適應(yīng)理論被廣泛地運(yùn)用于實(shí)際生活和生產(chǎn)中。實(shí)際中的一些重要的運(yùn)用主要包括自適應(yīng)線性預(yù)測(cè),回波消除,自適應(yīng)通道均衡等。自適應(yīng)理論的這些運(yùn)用使我們意識(shí)到也可以采用自適應(yīng)濾波器來實(shí)現(xiàn)直達(dá)波消除。通過分析了直達(dá)波的特性后,發(fā)現(xiàn)基于LMS 自適應(yīng)濾波器可以被用來解決這個(gè)問題。</p><p><b>  1直達(dá)波的模式</b></p><p> 

7、 為了詳細(xì)的分析這個(gè)問題,我們必須先建立一個(gè)準(zhǔn)確的直達(dá)波的模型。經(jīng)過分析對(duì)比,我們發(fā)現(xiàn)直達(dá)波的特性與無線電信道中的多徑傳播十分相似。兩者都是由與第一個(gè)到達(dá)的波信號(hào)相比,經(jīng)過不同的延時(shí)的分布振幅所構(gòu)成的。所以無線電信道系統(tǒng)中的多徑傳播模型可以用于直達(dá)波的表示。因此我們可以得到直達(dá)波的脈沖響應(yīng)可表示為[4]:</p><p><b>  (1)</b></p><p> 

8、 其中表示信號(hào)的振幅,是信號(hào)的時(shí)間延遲,是相移,N是信號(hào)多徑傳播的總共路數(shù)。</p><p><b>  因?yàn)槲覀冇校?lt;/b></p><p><b>  (2)</b></p><p>  等式(1)可以看做一個(gè)連續(xù)時(shí)間FIR濾波器的脈沖響應(yīng)。在無源雷達(dá)系統(tǒng)中,無源雷達(dá)的接收器的輸出是與雷達(dá)的數(shù)字信號(hào)處理器相連。我們引入

9、一個(gè)新的復(fù)雜參數(shù)來替換等式(2),并把等式(1)進(jìn)行Z變換后,得到表達(dá)式如下:</p><p><b>  (3)</b></p><p>  這就是直達(dá)波的在Z域的模型的表達(dá)式。如果我們把等式(3)看作一個(gè)FIR濾波器的傳遞函數(shù),并且其脈沖響應(yīng)是已知的,由此我們對(duì)直達(dá)波是可以進(jìn)行估計(jì)的。從而直達(dá)波消除的問題轉(zhuǎn)變?yōu)槿绾潍@得等式(3)中的系數(shù),即如何準(zhǔn)確的定義直達(dá)波的模

10、型,實(shí)際中,這有很多不同的方式完成這個(gè)問題。由于FIR濾波器的結(jié)構(gòu),基于LMS自適應(yīng)濾波器理論能夠被用于解決這個(gè)問題。</p><p>  2 基于LMS自適應(yīng)濾波器的直達(dá)波消除的實(shí)現(xiàn)</p><p>  自從Widrow和Hoff在1960年提出了LMS算法[5],LMS算法被廣泛地用于各種各樣的自適應(yīng)濾波器。LMS算法的一個(gè)顯著特點(diǎn)是運(yùn)算的簡(jiǎn)單方便。它不需要經(jīng)過復(fù)雜的計(jì)算,并且它可以保

11、持系統(tǒng)良好的穩(wěn)定性,并且可以輕而易舉地在DSP系統(tǒng)上實(shí)現(xiàn)。</p><p>  通常LMS算法包括兩個(gè)基本的過程:一個(gè)是濾波器過程,另一個(gè)是自適應(yīng)過程[6]。在濾波器進(jìn)行濾波過程中,第一步是根據(jù)濾波器的輸入值計(jì)算濾波器輸出值,第二步是由自適應(yīng)濾波器的實(shí)際輸出值和期望輸出值相比較,從而通過計(jì)算可以得到估計(jì)誤差。在自適應(yīng)過程中,濾波器抽頭輸出值的加權(quán)系數(shù)會(huì)根據(jù)估計(jì)誤差自動(dòng)地進(jìn)行調(diào)整。因此抽頭輸出值的加權(quán)系數(shù)會(huì)被不斷地

12、重新確定。在實(shí)際濾波器過程中,通常這兩步是一起進(jìn)行的,并且構(gòu)成一個(gè)閉環(huán)的反饋回路。其作用主要是使得估計(jì)誤差逐漸地趨近于零。</p><p>  當(dāng)信號(hào)中有噪聲存在時(shí),在這兩個(gè)過程不斷地重復(fù)若干次后,基于LMS濾波器的估計(jì)誤差輸出值將收斂于可以接受的水平。因此,我們可以給出下面的三個(gè)重要的表達(dá)式:</p><p><b>  濾波器的輸出:</b></p>

13、<p>  . (4)</p><p><b>  估計(jì)誤差:</b></p><p>  . (5)</p><p>  濾波器的抽頭加權(quán)系數(shù)的跟新:</p><p>  ,

14、 (6)</p><p>  其中表示來自濾波器的抽頭系數(shù)所組成的向量,表示濾波器的輸入向量,表示步長因子,它決定了基于LMS的自適應(yīng)濾波器的收斂速度。</p><p>  在下一步中,我們將提出把基于LMS自適應(yīng)濾波用于直達(dá)波消除的方法。根據(jù)上面一節(jié)介紹基于LMS的自適應(yīng)濾波器理論知識(shí)可知,這項(xiàng)工作的關(guān)鍵是如何從直達(dá)波的模型中獲得基于LMS自適應(yīng)濾波器的參數(shù)。<

15、/p><p>  圖1是包含有參考輸入信號(hào)和回波信號(hào)的自適應(yīng)直達(dá)波消除的原理框圖,其輸出是濾波器的抽頭系數(shù)。與標(biāo)準(zhǔn)的基于LMS的自適應(yīng)濾波器相比較,在直達(dá)波消除中,濾波器的輸入向量是由參考信號(hào)的一些延遲波所組成的。抽頭系數(shù)向量與等式(3)中參量是相對(duì)應(yīng)的。</p><p>  圖1自適應(yīng)直達(dá)波的消除</p><p>  當(dāng)自適應(yīng)算法達(dá)到收斂點(diǎn)時(shí),濾波器的估計(jì)誤差就是回波

16、信號(hào),而此時(shí)直達(dá)波已經(jīng)被成功地濾除了。通常在一個(gè)無源雷達(dá)系統(tǒng)中,當(dāng)在所選擇的區(qū)域內(nèi)沒有所希望的目標(biāo)時(shí),抽頭系數(shù)的設(shè)置可以通過基于LMS算法的自適應(yīng)濾波器獲得,因此我們通過這種方法可以建立起直達(dá)波的模型,并且我們可以把抽頭系數(shù)的值存儲(chǔ)在DPS系統(tǒng)的內(nèi)部存儲(chǔ)器中。當(dāng)無源雷達(dá)工作時(shí),存儲(chǔ)在DSP系統(tǒng)內(nèi)部存儲(chǔ)器中的抽頭系數(shù)被調(diào)用,從而可以把直達(dá)波從信號(hào)中濾除。這種消除的方式可以用下面的等濾波器哦式表示:</p><p>

17、<b>  (7)</b></p><p>  式中表示回波信號(hào)。表示自適應(yīng)濾波器的輸入向量,它是由參考信號(hào)的一些延時(shí)信號(hào)波組成的。表示LMS自適應(yīng)濾波器的抽頭系數(shù)值組成的向量。</p><p><b>  3 仿真結(jié)果</b></p><p>  為了評(píng)估基于LMS自適應(yīng)濾波器直達(dá)波消除的性能,在把這種濾波器被運(yùn)用于實(shí)際

18、之中前,我們必須先進(jìn)行一些仿真。在MATLAB的軟件環(huán)境下,由于MATALB包括許多子模塊,比如調(diào)頻信號(hào)器,加性信道噪聲,直達(dá)波的形成和基于LMS自適應(yīng)濾波器等模塊。由此模擬系統(tǒng)能夠被順利地建立起來。在FM廣播信號(hào)發(fā)射器的分路中,首先調(diào)頻參數(shù)是根據(jù)調(diào)頻廣播標(biāo)準(zhǔn)初始化的,且調(diào)制信號(hào)是來自聲波文件的。而信道的噪聲是被假定添加的是高斯白噪聲(AWGN)。在直達(dá)波的形成過程中,多徑傳播的總的路數(shù)為16,所以自適應(yīng)濾波器的抽頭數(shù)也是16,并且每個(gè)

19、傳播路徑的幅度是單獨(dú)給出的?;贚MS的自適應(yīng)濾波器的程序開發(fā)是按照第二部分的三個(gè)關(guān)系式設(shè)計(jì)的。由于當(dāng)抽頭系數(shù)輸出值獲得后,消除操作變得十分的簡(jiǎn)單,所以如何準(zhǔn)確的獲得抽頭系數(shù)將變得極其重要。我們知道基于LMS的自適應(yīng)濾波器只有當(dāng)估計(jì)誤差收斂時(shí)才能正常工作。為了掌握LMS算法的動(dòng)態(tài),估計(jì)誤差必須能夠被顯示出來。所以仿真的輸出包括兩個(gè)部分:一個(gè)是濾波器的抽頭系數(shù)值,另外一個(gè)是估計(jì)誤差。</p><p>  圖2展示了

20、濾波器抽頭系數(shù)的實(shí)際值與采用LMS算法的獲得抽頭系數(shù)值之間的對(duì)比。從圖上我們可以清楚地看出,利用基于LMS算法的自適應(yīng)濾波器獲得輸出值是十分接近于真實(shí)值的。并且由此我們可以推導(dǎo)出濾波器的抽頭系數(shù)的輸出值的估計(jì)誤差十分小的。并且直達(dá)波的模型參數(shù)可以直接從兩個(gè)無源雷達(dá)接收機(jī)中獲得。</p><p>  圖(2) 實(shí)際抽頭系數(shù)的值與采用LMS算法的獲得抽頭系數(shù)值之間的對(duì)比</p><p>  基

21、于LMS的自適應(yīng)濾波器的收斂過程可以從圖(3)獲得</p><p>  圖(3) 基于LMS的自適應(yīng)濾波器的輸出誤差</p><p>  這表明大約在計(jì)算了兩百次之后,自適應(yīng)濾波器能夠達(dá)到了穩(wěn)定狀態(tài),并且估計(jì)誤差不斷地趨近于零,從而準(zhǔn)確的抽頭系數(shù)的估計(jì)值可以獲得了。</p><p><b>  4結(jié)論</b></p><p&

22、gt;  我們描述了一個(gè)自適應(yīng)方式,它可以消除FM發(fā)射信號(hào)的無源雷達(dá)回波中的直達(dá)波。直達(dá)波的特性被完整準(zhǔn)確地分析了,并且研究的結(jié)果已經(jīng)被展現(xiàn)出來了,從仿真結(jié)果來看,自適應(yīng)濾波器的優(yōu)勢(shì)已經(jīng)被完全的驗(yàn)證了。</p><p>  Using LMS Adaptive Filter in Direct Wave Cancellation</p><p>  XU Yuan-jun, TAO Ran

23、, WANG Yue, SHAN Tao</p><p>  (Department of Electronic Engineering, School of Information Science and Technology, Beijing Institute of Technology, Beijing 100081, China)</p><p><b>  Abstr

24、act:</b></p><p>  the way to use the least-mean-square (LMS) arithmetic to cancel the direct wave for a passive radar system is introduced. The model of the direct wave is deduced. By using the LMS ada

25、ptive FIR filter, the soft-ware solution for FM passive radar system is developed instead of the hardware consumption of the existent exper-iment system of passive radar. Further more some simulative results are given. T

26、he simulative results indicate that</p><p>  using LMS arithmetic to cancel the direct wave is effective.</p><p>  Key words: LMS arithmetic; adaptive filtering; direct wave cancellation</

27、p><p>  Over the past years, most radar experts focused on the passive radar system, which only uses commercial radio broadcast station as a source of the radar transmitter, such as TV and GSM transmitter. The

28、potential usefulness of this radar system is presented by some experiments[1]. A passive radar system includes a reference receiver and an echo wave receiver. Mostly the echo receiver received the target’s echo as well a

29、s the wave from the broadcast station through multipath propagation effect. As</p><p>  1 The Mode of Direct Wave</p><p>  To analyze this problem in detail, it is necessary to set up a correct

30、model of direct wave. The behavior of the direct wave is very like the multipath propagation of radio channel, both of them are composed of distributed amplitude at different time delays in comparison of the first arrivi

31、ng ray, so the model of mutipath propagation of the radio channel can be introduced, thus the impulse response of the direct wave can be expressed as[4]</p><p><b>  (1)</b></p><p>  

32、Where is the amplitude,τnis the time delay,isthe phase shift, andN is the total number of multipath propagation components.</p><p>  Because we have</p><p><b>  (2)</b></p>&

33、lt;p>  Equation (1) can be considered as a continuous time FIR filter’s impulse response. In the passive</p><p>  radar system, the output of the receiver is digitalized at the digital radar signal proces

34、sor. By introducing a new complex parameteraito substitute the value of Eq.(2), Eq.(1) is changed toz-transform representation given as</p><p><b>  (3)</b></p><p>  This is the model

35、 of the direct wave inZdomain, if Eq.(3) is taken as the transfer function of</p><p>  an FIR filter. The impulse response is known, and the direct wave could be estimated. Thus the problem of adaptive direc

36、t wave cancellation becomes a problem of how to get the factoranin Eq.(3), i.e. how to identify the model of direct wave. There are several different ways to complete this task. Because of its FIR structure, the LMS adap

37、tive filter method can be introduced to solve the problem.</p><p>  2 Implementing LMS Adaptive Filter In Direct Wave Cancellation</p><p>  Since Widrow and Hoff developed the LMS arithmetic[5]i

38、n 1960, LMS arithmetic has been widely used in adaptive filters. A significant feature of the LMS is its simplicity, it does not need complicated computations, it could keep its excellent stability and it can be easily i

39、mplemented in DSP system. Usually the LMS arithmetic consists of two basic processes: one is the filtering process, the other is the adaptive process[6]. In the filtering process, the first step is to compute the filter

40、output</p><p>  the filter will be adjusted in accordance with the estimation error, so a new set of taps will be determined. Those two steps work together, and constitute a feedback loop, the result of whic

41、h is to make the estimation error approach zero. When there exists noise, after repeating the two processes several times, the output estimation error of LMS filter will be converged to the acceptable level. Thus the thr

42、ee relations can be given as below:</p><p>  Filter output:</p><p>  . . (4)</p><p> ?、贓stimation error:</p><p>  . .

43、 (5)</p><p> ?、跿ap-weight adjustment:</p><p>  , (6)</p><p>  whered(n)denotes the tap of the filter,x(n) denotes the input vector of filter,μis called the

44、 step</p><p>  factor, which determines the convergence speed of the LMS filter.</p><p>  In the next step, we propose the way to apply the LMS adaptive filter to the direct wave cancellation. B

45、ased on the knowledge of LMS filter in the previous section, the key task is how to load the right LMS filter parameter from the model of direct wave.  </p><p>  Figure 1 is the block diagram of the adaptiv

46、e direct wave cancellation with the input reference wave and echo wave, whose output is the tap-weight.Compared with the standard relations of LMS adaptive relations, the input vector x(n) is composed of some delays of t

47、he reference wave, and the taps of the filter d(n) correspond to the factors in Eq.(3).</p><p>  When the adaptive arithmetic reaches the convergence point, the estimation error of the filter is the echo w

48、ave signal whose direct wave is largely removed. In a practical radar system, when there is no interested object in the detected space, a set of tap-weights can be got by using the LMS adaptive filter, so the model of th

49、e direct wave is established, and the tap-weights are stored in the memory of the DSP system. When the passive radar system works, the stored tap-weights are recalled to fu</p><p><b>  (7)</b><

50、;/p><p>  wherer(n)denotes the echo wave signal,x(n)denotes the input vector, that consists of the delays of</p><p>  reference wave, andd(n)denotes the tap-weight of the LMS adaptive filter.</p

51、><p>  3 Some Simulative Result</p><p>  To evaluate the performance of LMS adaptive direct wave cancellation, some simulations should be done before putting it into practical applications. Under t

52、he Matlab environment, which includes some sub-routings such as the FM broadcast signal generator, the channel noise adder, the direct wave forming and the LMS adaptive filter program, the simulation routings are develop

53、ed. In the FM broadcast signal generator sub-routing, first the FM parameters are</p><p>  initialized according to the FM broadcast standard, and the modulating signal comes from the sound wave file. The ch

54、annel noise is assumed to be the additive white Gaussian noise (AWGN). During the direct wave forming, the number of the multipath propagation components is 16, so the number of LMS adaptive taps is 16, and the amplitude

55、 for each mutipath propagation is given individually. The LMS adaptive filter program is developed in accordance with the three relations stated in section 2. Becau</p><p>  Figure 2 shows the comparison of

56、the true value and the adaptive result of the tap-weights, fromwhich it is found that the LMS adaptive result is close to the true value, which implies that the estimation error of the tap-weights is very small, and the

57、model parameters of the direct wave are available from the two receivers of the passive radar.</p><p>  The convergent process of the LMS adaptive filter could be obtained from Fig.3, which shows that after

58、calculating about 200 times, the filter reaches the stable state, the estimation error tends to zero, and the right estimating tap-weight is got. </p><p>  4 Conclusions</p><p>  We have describ

59、ed an adaptive means to eliminate the direct wave from the echo wave in the passive radar system based on the FM broadcast signal. The behavior of the direct wave is analyzed fully, and the results of research have been

60、presented. From the simulation results, the advantage of this adaptive filter is demonstrated.</p><p>  References:</p><p>  [1] David A. Passive system hints at stealth detection[J]. Aviation W

61、eek & Space Technology, 1998(12): 70-71.</p><p>  [2] Howland P E. A passive metric radar using a transmitter of opportunity[Z]. International Conference on Radar,</p><p>  Paris, 1994.</

62、p><p>  [3] Sahr J D, Lind F D. The manastash ridge radar: A passive bistatic radar for upper atmospheric radio science[J].Radio Science, 1997, 32:2345-2358.</p><p>  [4] Baniak J, Baker Dr G, Mari

63、e A. Silent sentryTMpassive surveillance [ J]. Lockheed Martin Mission Systems,1999,1(6):1-10.</p><p>  [5] Haykin S. Adaptive filter theory[M]. Engle Wood Cliffs,Prentice-Hall, 1986.</p><p>  [

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論