污水處理外文翻譯_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  附 錄</b></p><p><b>  黑龍江科技學(xué)院</b></p><p>  畢業(yè)設(shè)計(論文)外文資料翻譯</p><p>  學(xué)院(系): 資源與環(huán)境工程學(xué)院 </p><p>  專 業(yè): 環(huán)境工程

2、</p><p>  姓 名: 劉 勵 治 </p><p>  學(xué) 號: 26號 </p><p>  外文出處: http://protein.bio.msu.ru/biokhimiya/ </p><p>  ontents/v65/ful

3、l/65030405.html</p><p>  附 件: 1.外文資料翻譯譯文;2.外文原文。</p><p>  微生物中多聚磷酸鹽細(xì)菌加強生物廢水中</p><p><b>  清除磷的能力</b></p><p><b>  摘要</b></p><p>  

4、活性污泥處理工藝在厭氧和有氧(厭氧—好氧法)環(huán)境交替進行方法可以提高的廢水中磷的去除效果(EBPR)。據(jù)了解,聚磷菌(PAB)在厭氧—好氧法中發(fā)揮重要作用。本文對微生物的新陳代謝和群落結(jié)構(gòu)描述有限,主要突出在EBPR過程中的選擇作用。微生物在厭氧—好氧法中,碳源豐富的厭氧環(huán)境和碳源缺乏的好氧環(huán)境交替進行,促進了聚磷菌重要的新陳代謝特征。其中包括有機質(zhì)的吸收,以及把它們轉(zhuǎn)化為細(xì)胞內(nèi)聚磷菌自身儲存的PHA和水解產(chǎn)物,并在厭氧條件下釋放能量。

5、假設(shè)細(xì)胞內(nèi)神經(jīng)的功能是作為調(diào)節(jié)器,調(diào)節(jié)細(xì)胞的氧化還原平衡。能另儲存有助與聚磷菌在厭氧環(huán)境中維持氧化還原平衡,吸收各種類型的有機質(zhì),增強微生物的選擇功能。聚磷菌不能由其他物質(zhì)組成,各種各樣的細(xì)菌除外。要確定EBPR工藝中微生物群落的結(jié)構(gòu),需要通過分子技術(shù)細(xì)心觀察在各種EBPR中,每一種聚磷菌的活動情況,因為許多聚磷菌都是不可用的培養(yǎng)基。</p><p><b>  關(guān)鍵詞: </b></

6、p><p>  活性污泥 厭氧—好氧法 生態(tài)學(xué) 生物加強清除磷酸鹽 微生物群落 聚磷菌 廢水處理工藝</p><p>  當(dāng)過量的含磷廢水排入不外流的水體,湖泊或內(nèi)陸海水時會造成水體富營養(yǎng)化。(海藻過量生長繁殖)要在污水排入水體之前去處水中的磷。厭氧、好氧條件交替控制活性污泥法已經(jīng)成功的用于提高水體中磷的去處效果。這種厭氧好氧交替運行的工藝已經(jīng)得到

7、普遍運用,在厭氧段、好氧段池體的空間布局以及利用設(shè)備的污泥回流系統(tǒng)等方面有顯著效果。例如這種被稱為EBPR的厭氧—好氧或厭氧—缺氧過程。據(jù)研究顯示,聚磷菌在EBPR厭氧好氧法中具有重要作用。EBPR要實現(xiàn)高而穩(wěn)定的性能,必須保持聚磷菌在系統(tǒng)中的活性。</p><p>  基本的厭氧—好氧法的圖表可以說明其中的問題。這一過程的特點是結(jié)構(gòu)上存在一種厭氧階段,保持絕對厭氧條件,沒有氧氣,也沒有no2-/no3-為活性污

8、泥細(xì)菌提供電子受體。有機質(zhì)的供應(yīng)一部分來自進入?yún)捬醵蔚奈鬯?,一部分是反?yīng)器中回流污泥補充碳源。在EBPR過程中,加快厭氧段有機質(zhì)的吸收率是細(xì)菌得到微生物的關(guān)鍵。這種PAB繁殖機制可以如下表述。通常,在厭氧階段活性污泥向污水中釋磷,同時吸收有機質(zhì)。在后期的好氧段,吸收的磷,遠(yuǎn)大于在厭氧段前期釋放的磷。污水中的磷被去處了,它作為一種物質(zhì)積累到細(xì)胞里。多聚磷酸鹽是一種高能化合物,它水解能為細(xì)胞多種生化反應(yīng)提供足夠的能量。在厭氧階段,多聚磷化物

9、的水解使PAB獲得足夠的能量以滿足它們吸收有機質(zhì)。沒有電子受體(氧,NO2-/NO3-)好氧細(xì)菌和反硝化細(xì)菌沒有足夠的能量利用有機質(zhì),也不能完成PAB的利用。因此采用厭氧段使PAB具有優(yōu)勢,更好的處理污泥中的磷。處理系統(tǒng)中的過量污泥并收集含高濃度磷的污泥,這樣可以提高除磷效率。數(shù)量極少的純培養(yǎng)基在EBPR中扮演重要角色。EBPR中新陳代謝方面的研究主要是基于對濃集的混合培養(yǎng)基的研究而不是純培養(yǎng)基。這方面的不足就是</p>

10、<p>  EBPR工藝中聚磷菌的碳代謝</p><p>  雖然厭氧—好氧法對于EBPR從工程角度來說已經(jīng)是成熟的工藝方法,但它還不能清楚的解釋一些微生物方面的定義</p><p>  在微生物的新陳代謝過程中,厭氧段通過廢水中細(xì)菌的酶化作用完成了碳化合物的吸收。由于污泥在厭氧條件下完成了和碳化合物的充分接觸,生物體能更有效的利用碳質(zhì),在厭氧環(huán)境中占據(jù)優(yōu)勢。因此,在厭氧條件下,

11、PAB能實現(xiàn)對碳質(zhì)的高速吸收的原因是我們一直關(guān)注的重要課題。據(jù)了解,短鏈脂肪酸醋酸有利于EBPR中碳的來源,并且在EBPR中新陳代謝已經(jīng)作為碳質(zhì)的模型正在進行研究。在這項研究上有一個決定性問題,就是事實上沒有一個細(xì)菌可以從EBPR工藝中孤立起來,來顯示EBPR污泥的主要特征。任何孤立的純文化每一個細(xì)菌在掩樣楊。這就是EBPR中的微生物被研究原因。這種高濃度PAB培養(yǎng)基通常從模擬實驗獲得,模擬厭氧—好氧法處理廢水。</p>

12、<p>  在一組醋酸作為碳源的厭氧實驗中,含高濃度PAB的活性污泥利用短鏈迅速吸收醋酸,在細(xì)胞內(nèi)累計PHAs釋放磷。吸收的醋酸作為PHs轉(zhuǎn)化和積累。據(jù)發(fā)現(xiàn)在高濃度PAB中PHAs的積累由4部分組成3HB, 3HV, 3H2MB,和3H2MV。分析這些PHAs的化學(xué)成分并證明是由上述四個單位組成。至于碳水化合物,有人證明了它存在于厭氧—好氧活性污泥中,當(dāng)醋酸作為碳源被吸收時,高濃度PHAs在厭氧段形成。醋酸轉(zhuǎn)化為PHAs需要減

13、少電能,因為PHAs比醋酸不易合成。為了解釋在沒有電子受體情況下減少電能這個過程,Mino 和Arun提出一個假設(shè)模型。該模型中,在假設(shè)降低PHAs能量情況下,厭氧環(huán)境中存儲的乙酰部分氧化為二氧化碳。這種模式現(xiàn)在被稱為Mino模型,其相關(guān)的一些研究者已證實,理論化學(xué)計量學(xué)根據(jù)模型依照顯示能定量地解釋通過PAB 污泥將醋酸鹽和糖朊轉(zhuǎn)換成PHA ,成功地采用了類似的概念來解釋在EBPR中厭氧吸收率問題。</p><p&g

14、t;  EBPR中厭氧碳新陳代謝模型</p><p>  另一個假說是由Matsuo、Comeau和 Wentze提出來的。根據(jù)這種假說,TCA循環(huán)假設(shè)在厭氧條件下進行,把一部分醋酸氧化成二氧化碳并減少能量。這種模式通常只在厭氧或好氧環(huán)境下進行循環(huán)。對于這一矛盾的熱力學(xué)理論,人們已經(jīng)在厭氧或好氧環(huán)境中發(fā)現(xiàn)完整的TCA循環(huán)。這些微生物利用硫元素和電子受體通過氧化醋酸完全轉(zhuǎn)化二氧化碳。據(jù)認(rèn)為,這種情況的產(chǎn)生主要是要求

15、減少能量生成代謝,就像Mino模型;而不是TCA循環(huán)那種預(yù)言。原因如下:(1)這種理論能很好地解釋實驗觀察到醋酸厭氧吸收率的現(xiàn)象,通過高濃度PAO,PHA的形成、乙二醇的應(yīng)用、二氧化碳的生成。(2)13C示蹤實驗器材的使用指出:醋酸通過厭氧污泥吸收的不是二氧化碳,因此不會通過循環(huán)進行代謝。(3)實驗用13C-器材,顯示乙二醇轉(zhuǎn)化為厭氧代謝的淤泥。</p><p>  另一方面,有證據(jù)表明有可能介入的局部TCA循環(huán)

16、發(fā)電,減少電能是在EBPR厭氧階段。即13C的碳被轉(zhuǎn)化高濃度PAB,醋酸-污泥濃縮被認(rèn)為是絕對厭氧條件下釋放二氧化碳。迄今為止,這是唯一可能的實驗結(jié)果顯示了運行周期邁進的階段厭氧Ebpr的過程. 循環(huán)的功能邁進的碳排放源的厭氧吸收率以及對微生物的篩選過程Ebpr有待進一步調(diào)查.</p><p>  EBPR的過程中,受到其他微生物碳厭氧環(huán)境和豐富的碳有氧環(huán)境惡劣. 這一交替的、綜合和退化三種形式臨時醫(yī)院引起循環(huán)和

17、新陳代謝,是通過這些微生物完成的。這種微生物循環(huán)是能量的消耗,而不是微生物的能源利用效率。然而,這種微生物循環(huán)使PAB在厭氧—好氧環(huán)境中進行選擇。如何解釋這一規(guī)定在細(xì)胞循環(huán)代謝是由Pramanik發(fā)現(xiàn)的。這一模式包含了一整套涉及細(xì)胞代謝途徑和能源需求及高分子合成代謝物如何運輸并跨越細(xì)胞膜. 模型不僅支持假設(shè),還提供了生物代謝途徑,以及能源供應(yīng),而且還表明,在代謝途徑中規(guī)則成立。</p><p>  強化社會結(jié)構(gòu)生

18、物學(xué)微生物磷清除過程</p><p>  不動桿菌首次作為PAB被提出來,很少有研究人員質(zhì)疑不動桿菌是否僅僅是EBPR中的一種細(xì)菌。它有可能被認(rèn)為高磷EBPR淤泥清除能力是一組由微生物,試圖找出幾個不動桿菌以外生物體。現(xiàn)在,新的強有力的工具的運用,對微生物體結(jié)構(gòu)的分析,了開發(fā)和利用EBPR淤泥。其中化學(xué)分析方法與分子分析與方法,如熒光在原地交錯(漁)、圖書館克隆方法、熱梯度電泳(DGGE)、終端限制碎片長度白細(xì)胞

19、(T生物)等。</p><p>  高EBPR濃度污泥的微生物多樣性已成功利用這種新技術(shù)。分子分析適用于活性污泥結(jié)構(gòu)的特點分析,醌生物樣品的種類數(shù)量可確定,應(yīng)當(dāng)明確反映研究樣本形態(tài)組成。有人建議由幾個不同EBPR污泥組織,醌最豐富、Q-8,僅占總數(shù)約PAB污泥的31%(磷含量1.94、60mG懸浮固體); 第二個最豐富的人,Q-10,占8.5%; 第三、MK-8(H4)、6.5%。換句話說,有幾個不同污泥微生物群

20、體,已確認(rèn)的其他研究人員也用它,T-樣品的分離,PCR-16S更直接表明不同的人口,數(shù)量約19至24年各主要見于高度PAB污泥濃縮。(磷含量、懸浮固體12%)。Dgge的技巧也顯示分離,擴大碎片rDNA和EBPR淤泥中的一些主要的DNA序列不同的碎片,暗示研究Ebpr結(jié)構(gòu)多樣性。這些成果有力地表明,沒有一個是PAB或基因型數(shù)量有限,但也會涉及各類細(xì)菌。</p><p>  Bond應(yīng)用PCR克隆啟動兩種活性污泥,

21、高磷清除績效果以及典型的新陳代謝,PAB等。他們發(fā)現(xiàn)這個組織數(shù)量相當(dāng)驚人,高磷污泥比低磷污泥大幅度提高了。這一結(jié)果顯示,有特定集團作用. 然而,只有14%的被占領(lǐng),基因總數(shù)在少數(shù)的高磷污泥?,F(xiàn)在還不能確定這能否為觀察到高磷清除績效。討論之前,有報道EBPR結(jié)構(gòu)中有一種壓倒優(yōu)勢(細(xì)菌總數(shù)81%)。就目前而言,這是唯一的一個案例,主要是細(xì)菌的主要表現(xiàn)是EBPR負(fù)責(zé)。用DAPI進行雙重染色與rRNA的探針,針對不同對象確定細(xì)菌組繁殖在原地。因

22、此,在檢驗污泥時這兩個群體被認(rèn)為在累積磷。報告說,陽性菌G+C高含量DNA扮演重要角色,因為較高EBPR發(fā)生這種細(xì)菌組發(fā)現(xiàn)了一個克隆EBPR的過程。大多數(shù)基因陽性菌具有很強的DNAG+C含量,依據(jù)實驗樣品的rDNA碎片從高濃度-污泥濃縮(磷含量,12%的懸浮固體)、污泥很低磷酸鹽含量(2%懸浮固體)。認(rèn)為陽性菌具有很強的DNAG+C的結(jié)構(gòu)不只是PAB的重要組成部分。醌分析使用方法,該市污水處理廠污泥運作模式相類似,不論對方采取何種過程污

23、泥 。從淤泥中EBPR程序和常規(guī)程序分子形態(tài)十分相似。比較不同啟動模式醌淤泥建議</p><p><b>  展望未來</b></p><p>  這次審查顯示,PAB不是由少數(shù)受限制物質(zhì)組成,但也會轉(zhuǎn)化成各類細(xì)菌。在EBPR中細(xì)菌的種類不同,負(fù)責(zé)功能不同。在EBPR過程中,明確界定微生物Ebpr社會結(jié)構(gòu)和過程的機制來描述PAB生態(tài)選擇,在研究加強和行為發(fā)生個別種類對

24、EBPR的需要。因為許多PAB似乎是不可能的結(jié)構(gòu),只有分子方法能實現(xiàn)這些目的。這可能意味著,新陳代謝的關(guān)鍵基因的EBPR常見細(xì)菌不同。最有趣最重要的是確定這種基因并且找出它是怎樣的規(guī)則。</p><p>  Microbial Selection of Polyphosphate-Accumulating Bacteria in Activated Sludge Wastewater Treatment Proc

25、esses for Enhanced Biological Phosphate Removal</p><p>  Abstract:Activated sludge processes with alternating anaerobic and aerobic conditions (the anaerobic-aerobic process) have been successfully used for

26、enhanced biological phosphate removal (EBPR) from wastewater. It is known that polyphosphate-accumulating bacteria (PAB) play an essential role for EBPR in the anaerobic-aerobic process. The present paper reviews limited

27、 information available on the metabolism and the microbial community structure of EBPR, highlighting the microbial ecological sele</p><p>  KEY WORDS: activated sludge, anaerobic-aerobic process, ecological

28、selection, enhanced biological phosphate removal (EBPR), Lampropedia, microbial community, (PHAs), polyphosphate-accumulating bacteria, wastewater treatment </p><p>  Phosphate can cause eutrophication (extr

29、aordinary growth of algae) when it is excessively discharged into closed natural water bodies like lakes and inland seas. To control eutrophication, phosphate removal from wastewater is often required before wastewater i

30、s discharged to the receiving water bodies. Activated sludge processes with alternating anaerobic and aerobic conditions have been successfully used for enhanced biological phosphate removal (EBPR) from wastewater. This

31、anaerobic-aerobic al</p><p>  A basic configuration of the anaerobic-aerobic process is schematically shown in Fig. a. This process is structurally characterized by the presence of an anaerobic stage in whic

32、h absolute anaerobic conditions are kept with neither oxygen nor NO2-/NO3- available as electron acceptor for activated sludge bacteria. Organic substrates are supplied from influent wastewater into the anaerobic stage a

33、nd the return sludge comes into contact with the carbon source only in the anaerobic stage. Faster upta</p><p>  Fig. 1. a) Basic concept of anaerobic-aerobic process for EBPR. b) Behavior of the basic subst

34、ances in EBPR. TOC, total organic carbon present in the bulk solution; PO4-P, orthophosphate present in the bulk solution; glycogen, glycogen stored in the cells; PHA, polyhydroxyalkanoates stored in the cells. </p>

35、;<p>  Although the anaerobic-aerobic process for EBPR is an established process from an engineering point of view, it has not been clearly defined in microbiological terms. For example, the phylogenetic or taxono

36、mic groups responsible for EBPR have not been identified, and general structures of the EBPR microbial community have not been successfully described yet. Very few pure cultures have been isolated as candidates of PAB pl

37、aying a key role in EBPR processes. Studies on metabolic aspects of EBPR h</p><p>  CARBON METABOLISM ADOPTED BY POLYPHOSPHATE-</p><p>  ACCUMULATING BACTERIA IN EBPR PROCESSES</p>&l

38、t;p>  In terms of microbial metabolism, the anaerobic stage involves the uptake of organic substrates from wastewater by bacteria. Since the sludge comes into contact with organic substrates under anaerobic conditions

39、, organisms that can utilize organic substrates more rapidly in an anaerobic environment gain precedence. Therefore, the reason why PAB can achieve a very high rate of organic substrate uptake under anaerobic conditions

40、has been a major subject of concern. It has been well known that shor</p><p>  In anaerobic batch experiments with acetate as the carbon source, the activated sludge enriched with PAB typically take up aceta

41、te rapidly, accumulate PHAs in the cell, consume previously stored intracellular carbohydrate, and release Pi as a result of utilization of stored polyP. These typical behaviors of key substances involved in EBPR are gra

42、phically shown in Fig.. The acetate taken up is converted to and accumulated as PHAs. Satoh et al. [found that the PHAs accumulated in the PAB-enriched </p><p>  Fig. 3. A conceptual model for anaerobic carb

43、on metabolism in an EBPR process (after references). </p><p>  Another hypothesis was postulated by Matsuo et al., Comeau et al. [, and Wentzel et al. [to account for the source of the reducing power in anae

44、robic acetate metabolism. According to this hypothsis, the TCA cycle is assumed to operate under anaerobic conditions in order to oxidize a part of acetate to CO2 and to generate reducing power in the form of NADH. This

45、model is referred to as the Comeau-Wentzel model. Usually the TCA cycle operates only under aerobic or anoxic conditions. The oxidation </p><p>  On the other hand, there is evidence that indicates the possi

46、bility of partial involvement of the TCA cycle in the generation of reducing power by PAB in the anaerobic stage of the EBPR process. Namely, 13C-labeled carbon in the acetate fed to a PAB-enriched sludge was found to be

47、 released as CO2 under absolute anaerobic conditions. So far, this is the only experimental result indicating the possible functioning of the TCA cycle in the anaerobic phase of the EBPR process. The function of the TCA&

48、lt;/p><p>  In the EBPR process, microorganisms are exposed to alternate carbon-rich anaerobic environments and carbon-poor aerobic environments. By this alternation, synthesis and degradation of three kinds of

49、 biopolymers (polyP, PHA, and glycogen) are induced and metabolic cycling through these biopolymers is established in microorganisms. Such metabolic cycling is energy consuming and not favorable for microorganisms in ter

50、ms of energy utilization efficiency. Ecologically, however, this metabolic cycling</p><p>  MICROBIAL COMMUNITY STRUCTURE OF ENHANCED BIOLOGICAL PHOSPHATE REMOVAL PROCESS</p><p>  When Acinetoba

51、cter was first proposed as PAB, there were very few researchers who raised the question of whether Acinetobacter is the only bacterium responsible for EBPR. It may have been somehow assumed that EBPR sludges with high ph

52、osphate removal capability were dominated by a single group of microorganisms, and few attempts were made to find candidates of PAB other than Acinetobacter. Now, new and powerful tools for the analysis of microbial comm

53、unity structures have been developed and used </p><p>  High microbial diversity of the EBPR sludge has been demonstrated by using these new techniques. Quinone profiling was applied to characterize activate

54、d sludge community structures. The type of quinone in biological samples can be quantitatively determined, and the quinone patterns should explicitly reflect the chemotaxonomic composition of the examined samples. It was

55、 suggested that EBPR sludges consist of several different chemotaxonomic groups. The most abundant quinone, Q-8, accounts for onl</p><p>  Bond et al. applied PCR cloning to two activated sludges, one with h

56、igh phosphate removal performance as well as the typical metabolism of PAB and the other without. They found that the Rhodocyclus group belonging to the beta-subclass of proteobacteria was present in significantly higher

57、 numbers in the high-phosphate sludge than in the low-phosphate sludge. This result suggests that the Rhodocyclus group may have a specific role in EBPR. However, the Rhodocyclus group occupied only 14% of the to</p&g

58、t;<p>  FUTURE PERSPECTIVES</p><p>  The present review shows that PAB are not composed of a few limited genospecies, but involve phylogenetically and taxonomically diverse groups of bacteria. The typ

59、e of bacteria responsible for EBPR may vary among different situations. To clearly define the microbial community structure of EBPR processes and to describe mechanism of ecological selection for PAB in EBPR processes, a

60、 closer look into occurrence and behavior of individual species of PAB in various EBPR processes will be needed. Sinc</p><p>  REFERENCES</p><p>  1. Barnard, J. L. (1975) Water Res., 9, 485-490

61、.</p><p>  2. Fuhs, G. W., and Chen, M. (1975) Microb. Ecol., 2, 119-138.</p><p>  3. Buchan, L. (1983) Wat. Sci. Tech., 15, 87-103.</p><p>  4. Lotter, L. H. (1985) Wat. Sci. Tech.

62、, 17, 127-138.</p><p>  5. Mino, T., Kawakami, T., and Matsuo, T. (1984) Wat. Sci. Tech., 17, 93-106.</p><p>  6. Mino, T., Kawakami, T., and Matsuo, T. (1985) Wat. Sci. Tech., 17, 11-21.</p&

63、gt;<p>  7. Arun, V., Mino, T., and Matsuo, T. (1988) Water Res., 22, 565-570.</p><p>  8. Marais, G. v. R., Lowenthal, R. E., and Siebritz, I. (1982) Proc. Post Conf. Seminar on Phosphate Removal in

64、Biological Treatment Processes, Vol. 2,pp. 5-6.</p><p>  9. Mino, T., Tsuzuki, Y., and Matsuo, T. (1987) Proc. IAWPRC Int. Conf. on “Biological Phosphate Removal from Wastewaters”, Adv. Wat. Pollut. Cont. (R

65、amadori, R., ed.) Pergamon Press, Rome,pp. 27-38.</p><p>  10. Jenkins, D., and Tandoi, V. (1991) Water Res., 25, 1471-1478.</p><p>  11. Mino, T., van Loosdrecht, M. C. M., and Heijnen, J. J. (

66、1998) Water Res., 32, 3193-3207.</p><p>  12. Rabinowitz, B., Koch, F. A., Vassos, T. D., and Oldham, W. K. (1987) Proc. IAWPRC Int. Conf. on “Biological Phosphate Removal from Wastewaters”, Adv. Wat. Pollut

67、. Cont. (Ramadori, R., ed.) Pergamon Press, Rome, pp. 349-352.</p><p>  13. Wentzel, M. C., Ekama, G. A., Loewenthal, R. E., Dold, P. L., and Marais, G. v. R. (1989) Water SA, 15, 89-102.</p><p>

68、;  14. Smolders, G. J. F., van Loosdrecht, M. C. M., and Heijnen, J. J. (1996) Water Res., 30, 2748-2760.</p><p>  15. Satoh, H., Mino, T., and Matsuo, T. (1992) Wat. Sci. Tech., 26, 933-942.</p><

69、p>  16. Inoue, Y., Sano, F., Nakamura, K., Yosie, N., Saito, Y., Satoh, H., Mino, T., Matsuo, T., and Doi, Y. (1996) Polymer Int.,39, 183-189.</p><p>  17. Liu, W. T., Mino, T., Nakamura, K., and Matsuo,

70、T. (1994) J. Ferment. Bioeng., 77, 535-540.</p><p>  18. Mino, T., and Matsuo, T. (1984) Japan. J. Water Pollut. Res., 7, 605-609 (in Japanese).</p><p>  19. Maurer, M., Gujer, W., Hany, R., and

71、 Bachmann, S. (1997) Water Res., 31, 907-917.</p><p>  20. Pereira, H., Lemos, P. C., Reis, M. A., Crespo, J. P. S. G., Carrondo, M. J. T., and Santos, H. (1996) Water Res., 30, 2128-2138.</p><p&g

72、t;  21. Smolders, G. J. F., van der Meij, J., van Loosdrecht, M. C. M., and Heijnen, J. J. (1995) Biotech. Bioeng., 47, 277-287.</p><p>  22. Gottschalk, G. (1986) Bacterial Metabolism,2nd ed.,Springer-Verla

73、g, N. Y.</p><p>  23. Mino, T., Satoh, H., and Matsuo, T. (1994) Wat. Sci. Tech., 29, 67-70.</p><p>  24. Mino, T., Liu, W. T., Satoh, H., and Matsuo, T. (1996) Proc. 10th Forum for Applied Biot

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論