版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 外文翻譯</b></p><p><b> 譯文:</b></p><p> ?。校蹋谩。裕澹恚穑澹颍幔簦酰颍濉。茫铮睿簦颍铮臁。铮妗。幔睢。牛欤澹悖簦颍椋恪。龋澹幔簦椋睿纭。疲酰颍睿幔悖濉?lt;/p><p> ?。粒猓螅簦颍幔悖簦海裕瑁椋蟆。穑幔穑澹颉。椋睿簦颍铮洌酰悖澹蟆。帷。簦澹恚穑澹颍?/p>
2、ture?。悖铮睿簦颍铮臁。螅螅簦澹怼。妫铮颉。妫椋睢。澹欤澹悖簦颍椋恪。瑁澹幔簦椋睿纭。妫酰恚幔悖濉。猓幔螅澹洹。铮睢。簦瑁濉。校蹋谩。簦澹悖瑁睿铮欤铮纾。幔睿洹。簦瑁濉。澹欤澹悖簦颍铮睿椋恪。颍澹悖簦椋妫椋澹颉。簦澹悖瑁睿铮欤铮纾裕瑁濉。瑁幔颍洌鳎幔颍濉。幔睿洹。螅铮妫簦鳎幔颍濉。铮妗。簦瑁濉。螅螅簦澹怼。幔颍濉。幔欤螅铩。铮酰簦欤椋睿澹洌?lt;/p><p> ?。耍澹鳎铮颍洌海穑颍铮纾颍幔恚恚?/p>
3、ble?。欤铮纾椋恪。悖铮睿簦颍铮欤欤澹?;heating furnace;PID</p><p> 1 Introduction</p><p> Hot stove using simple bit type constant temperature control method, temperature control precision is not high, the temp
4、erature control is of unidirectional rising, large inertia, large time delay, time-varying characteristics, and the heating, thermal insulation is dependent on the resistance wire heating, cooling, rely on the natural en
5、vironment for cooling or add furnace material, once the overshoot is difficult to use control means to bring the temperature. According to mathematical model of</p><p> 2 System structure</p><p&g
6、t; . The hardware device is mainly composed of PC, programmable controller, temperature sensor, temperature transmitter, solid state relays and electric heating furnace. As shown in figure 1.</p><p> Fig 1
7、 the block diagram of the control system of heating furnace</p><p> The control system of control information and data information in the computer centralized management, allocation, make the system more si
8、mple, effective, the user can browse, printing various field data, statements, and also to control the spot operation control. The temperature control system of single loop control system, by the Mitsubishi Co Fx2N serie
9、s PLC as the core component, temperature detection using platinum thermal resistance KrlOO, used for real-time detection of temperature output</p><p> 3 PID control algorithm to achieve the PLC</p>&
10、lt;p> Using programmable controller for analog PID control, you can use the PID process control module, and this module is expensive, economy is poor. The system uses the PID function instruction, when P1D function i
11、nstruction with the analog quantity when used together, not only can be similar to the PID process control module, and the economy is good. Due to the heating furnace is large delay, large inertia link control object, th
12、e system adopts the integral separation PID algorithm and Bang positio</p><p> PLC main program flow diagram as shown in figure 2,</p><p><b> Fig 2</b></p><p> The PI
13、D algorithm program flow diagram as shown in Figure 3</p><p><b> Fig 3</b></p><p> 4 PID algorithm for converting the PWM wave output</p><p> The adjustment of the te
14、mperature control is the control of the bidirectional thyristor turn-on time, thereby changing the heating wire heating power to realize the temperature control. First of all, the PID operation result is converted into a
15、n internal timer timing value, to determine the delay time. This system adopts the power regulating circuit, control a power cycle in the actual conduction time, the output MV is converted to a time value mode. Due to th
16、e use of an internal timer time base</p><p> 5 conclusions</p><p> In the control system of the furnace, the PLC is called when the built-in PID calculation program, realized PID control algor
17、ithm based on call, simplify program, improve the programming efficiency, and is not easy to make a mistake, the temperature reached the goal of accurate control; at the same time, by the PID operation result decided wid
18、th, with the timer generated PWM wave, switch quantity instead of analog output, realize the PWM wave output, allows the system to control cost. Proved by </p><p> Change the heating wire heating power to r
19、ealize the temperature control. First of all, the PID operation result is converted into an internal timer timing value, to determine the delay time. This system adopts the power regulating circuit, control a power cycle
20、 in the actual conduction time, need to be output</p><p> MV is converted to a time value mode. Due to the use of an internal timer</p><p> T200, time is 10 ms, because the power cycle selecte
21、d for Tz, so real</p><p> During heating time for t:fⅢ100Tz detector, the time value is stored in the database</p><p> Register D, for timer instruction calls. In PLC, there are two ways to ge
22、nerate PwM output pulse wave, one is by the PLC PWM special instruction generated, but PWM wave output channels is limited, such as the FXzN series PLC only Y0 and Y1 two channels; another is the internal timer to organi
23、zation, the switch quantity channel output. The system uses second methods, by two timer T200 and T246 produce a PWM wave, T246 decided to transfer power cycle, in order to ensure the normal conduction of th</p>&
24、lt;p><b> Reference</b></p><p> ( 1 ) Chen Yuanqi, .F%N programmable controller for temperature monitoring and control system</p><p> Design LJq. micro computer information, 200
25、5, ( 15).</p><p> ( 2 ) the clock Zhaoxin . The programmable control theory and application EM . Guangzhou SCUT;</p><p> University Press, .2003 ( 11).</p><p> ( 3 ) Song Bosheng
26、.PLC programming and practical guide ( M ) . Beijing : mechanical industry</p><p> Press .2006 ( 6).</p><p><b> 原文</b></p><p> PLC在加熱爐溫控制系統(tǒng)中的應(yīng)用</p><p>&l
27、t;b> 分享到 </b></p><p><b> 翻譯結(jié)果重試</b></p><p> 抱歉,系統(tǒng)響應(yīng)超時,請稍后再試</p><p> 支持中英、中日在線互譯</p><p> 支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可</p><p> 提供一鍵清空、復制功能、
28、支持雙語對照查看,使您體驗更加流暢</p><p> 摘要:本文介紹了以三菱plc為核心的加熱爐溫測量與,重點給出了PID控制算法和參數(shù)整定以及在PLC中的實現(xiàn)。控制系統(tǒng)系統(tǒng)控制核心單元PLC根據(jù)設(shè)定的溫度值與反饋信號進行分析、運算,按照P1D控制算法計算出控制量,由定時器生成PWM波,調(diào)節(jié)晶閘管的導通角a,從而實現(xiàn)溫度的精確控制。</p><p> 關(guān)鍵詞:PLC;PID;控制;溫度
29、;PWM波</p><p><b> 1引言</b></p><p> 熱爐多采用簡單位式恒溫控制方式,溫控精度不高,由于溫度控制具有升溫單向性、大慣性、大滯后、時變性等特點,而且其升溫、保溫是依靠電阻絲加熱,降溫則是依靠環(huán)境自然冷卻或添加爐料,一旦超調(diào)很難用控制手段使其降溫。針對被控對象難以精確確定數(shù)學模型這一特點,本系統(tǒng)由PLC作為核心控制器,根據(jù)溫度的變化采
30、用PID控制器,對溫度的采集數(shù)據(jù)進行計算,然后通過PLC輸出控制量,調(diào)節(jié)晶閘管的導通,達到溫度的精確控制。本文的控制對象為常用于冶金行業(yè)的HX-1型電加熱爐,爐溫為20-600°。</p><p><b> 2系統(tǒng)構(gòu)成 </b></p><p> 硬件設(shè)備主要由上位機、可編程控制器、測溫元件、溫度變送器、固態(tài)繼電器及電加熱爐組成。如圖1所示。</p
31、><p> 圖1加熱爐控制系統(tǒng)框圖</p><p> 控制系統(tǒng)的各種控制信息和數(shù)據(jù)信息都在上位機 集中管理、分配,使系統(tǒng)維護更加簡單、有效,用戶不但 可以瀏覽、打印現(xiàn)場的各種數(shù)據(jù)、報表,同時還能夠?qū)?控制現(xiàn)場的運行情況進行控制。 此溫度控制系統(tǒng)屬于單回路閉環(huán)控制系統(tǒng),以三 菱公司Fx2N系列PLC為核心部件,溫度檢測采用鉑熱 電阻KrlOO,用來實時檢測溫度輸出,經(jīng)RTD模塊放 大后送入模
32、擬量輸入模塊Fx2N一4AD,轉(zhuǎn)換成數(shù)字 量,經(jīng)用戶程序處理后,調(diào)用PLC內(nèi)部PID控制算法, 得到一個PID運算值,將該值變換為時間值,以一個隨 時間變化的PWM波來控制電壓過零觸發(fā)的固態(tài)繼電 器SSR,以調(diào)節(jié)電加熱絲的工作電流,實現(xiàn)加熱爐系統(tǒng) 的溫度控制。 軟件部分以Windows XP為操作系統(tǒng),采用工控 組態(tài)軟件MCGS為應(yīng)用服務(wù)器平臺。上位機與PLC 之間通過MPI口連接,實現(xiàn)上位機與PLC之間的通 訊。由上位機完成對溫度設(shè)定
33、、實時溫度及各控制參 數(shù)的實時監(jiān)控。</p><p> ?。常校桑目刂扑惴ǖ模校蹋脤崿F(xiàn)</p><p> 用可編程控制器對模擬量實現(xiàn)PID控制時,可以使用PID過程控制模塊,但此模塊價格昂貴,經(jīng)濟性差。本系統(tǒng)使用PID功能指令,當P1D功能指令與模擬量一起使用時,不但可以得到類似于PID過程控制模塊的效果,而且經(jīng)濟性好。由于加熱爐是大滯后、大慣性環(huán)節(jié)控制對象,本系統(tǒng)采用了積分分離的位置式
34、PID算法與Bang-Bang控制相結(jié)合的方法,即在過程的開始、結(jié)柬或大幅增加設(shè)定值時,采用Bang-Bang控制,防止偏差過大,產(chǎn)生積分積累,引起系統(tǒng)較大的超調(diào)甚至振蕩,使系統(tǒng)的穩(wěn)定性下降。而到過程后期,當偏差達到規(guī)定的范圍內(nèi)時,增加積分作用,以提高控制精度。在實際調(diào)試過程中,經(jīng)過幾次修改控制參數(shù),即可取得良好的控制器參數(shù),達到要求的精度。</p><p> ?。校蹋弥鞒绦蛄鞒虉D如圖2所示,</p>
35、;<p> PID算法程序流程圖如圖3所示</p><p> 4 PID算法轉(zhuǎn)換為PWM波輸出</p><p> 調(diào)工控溫就是控制雙向晶閘管的導通時間,從而改變加熱絲的加熱功率來實現(xiàn)溫度的控制。首先,將PID運算結(jié)果轉(zhuǎn)換成一個內(nèi)部定時器的計時值,以確定延時時間。本系統(tǒng)采用的是調(diào)功電路,控制一個調(diào)功周期中的實際導通時間,需將輸出量MV轉(zhuǎn)換為時間值的方式。由于使用內(nèi)部定時器
36、T200,時基為10ms,又由于調(diào)功周期選為Tz,所以實際加熱時間為t:f一Ⅲ儀100Tz,將時間值存放在數(shù)據(jù)寄存器D中,供定時器指令調(diào)用。在PLC中,有兩種方式產(chǎn)生PwM輸出脈沖波,一種是由PLC的PWM專用指令產(chǎn)生,但PWM波輸出通道有限,如FXzN系列PLC僅有Y0和Y1兩個通道;另一種是用內(nèi)部定時器來組織,經(jīng)開關(guān)量通道輸出。本系統(tǒng)采用第二種方法,由兩個定時器T200和T246產(chǎn)生一路PWM波,T246決定調(diào)功周期,為保證晶閘管的
37、正常導通,確保主電路正常工作,PLC輸出的脈沖必須與電網(wǎng)頻率保持嚴格的同步關(guān)系,為此,將與電網(wǎng)電源同步并保持倍頻關(guān)系的基本數(shù)字脈沖送入PLC輸入端,作為定時器T246的邏輯控制信號,T200決定脈沖寬度,延遲時間t由PID運算的輸出值MV決定。</p><p> ?。到Y(jié)論在該加熱爐控制系統(tǒng)中,采用分時調(diào)用PLC內(nèi)置的 PID運算程序,實現(xiàn)了PID控制算法的調(diào)用,簡化了程序, 提高了編程效率,而且不易出錯,達到了
38、溫度精確控制的 目的;同時,由PID運算結(jié)果決定脈寬,用定時器產(chǎn)生 PWM波,用開關(guān)量代替模擬量輸出,實現(xiàn)了PWM波的 多路輸出,使得系統(tǒng)控制成本降低。實踐證明,該系同具 有動態(tài)響應(yīng)快,控制精度高,具有很強的魯棒性的特點。改變加熱絲的加熱功率來實現(xiàn)溫度的控制。 首先,將PID運算結(jié)果轉(zhuǎn)換成一個內(nèi)部定時器的 計時值,以確定延時時間。本系統(tǒng)采用的是調(diào)功電路, 控制一個調(diào)功周期中的實際導通時間,需將輸出量MV轉(zhuǎn)換為時間值的方式。由于使用內(nèi)
39、部定時器T200,時基為10 ms,又由于調(diào)功周期選為Tz,所以實際加熱時間為t:f一Ⅲ儀100Tz,將時間值存放在數(shù)據(jù)寄存器D中,供定時器指令調(diào)用。 在PLC中,有兩種方式產(chǎn)生PwM輸出脈沖波, 一種是由PLC的PWM專用指令產(chǎn)生,但PWM波輸出通道有限,如FXzN系列PLC僅有Y0和Y1兩個通 道;另一種是用內(nèi)部定時器來組織,經(jīng)開關(guān)量通道輸 出。本系統(tǒng)采用第二種方法,由兩個定時器T200和 T24</p><
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于plc的加熱爐溫控制系統(tǒng)設(shè)計
- 基于PLC的加熱爐爐溫控制系統(tǒng).pdf
- FUZZY控制理論在電加熱爐溫控中的應(yīng)用.pdf
- 步進式加熱爐爐溫控制系統(tǒng)設(shè)計.pdf
- 加熱爐控制系統(tǒng)設(shè)計及其爐溫控制方法的研究.pdf
- 環(huán)形加熱爐爐溫控制系統(tǒng)的研究與設(shè)計.pdf
- 加熱爐溫度控制系統(tǒng)西門子PLC程序.dwg
- 加熱爐溫度控制系統(tǒng)西門子PLC程序.dwg
- 加熱爐溫度控制系統(tǒng)西門子PLC程序.dwg
- 加熱爐溫度控制系統(tǒng)西門子PLC程序.dwg
- 電加熱爐溫度控制系統(tǒng)設(shè)計
- 軋鋼加熱爐爐溫控制算法設(shè)計.pdf
- 感應(yīng)加熱爐溫控制算法研究.pdf
- 單片機模糊控制在電加熱爐溫度控制系統(tǒng)中的應(yīng)用.pdf
- 管式加熱爐溫度控制系統(tǒng)設(shè)計++
- b201 基于plc加熱爐溫度控制系統(tǒng)設(shè)計(全部結(jié)清)
- 加熱爐溫度控制系統(tǒng)-畢業(yè)論文
- 神經(jīng)網(wǎng)絡(luò)預(yù)測控制在加熱爐爐溫控制與優(yōu)化中的應(yīng)用.pdf
- 課程設(shè)計(論文)-基于plc的電加熱爐溫度控制系統(tǒng)設(shè)計
- 電加熱爐溫度微機控制系統(tǒng)設(shè)計
評論
0/150
提交評論